Polytopes with Preassigned Automorphism Groups

Egon Schulte and Gordon Williams

Or: How I Finally Got My Schulte Number Down to 1

A Brief Outline

- On collaborating with Egon
- Our problem
- Our solution for abstract polytopes
- Our method for constructing convex realizations

Our First Collaboration

ON THE IMBEDDABILITY OF A CLASS OF GENERALIZED POLYHEDRA

Schulte — Degree 1 Williams

Our First Collaboration

ON THE IMBEDDABILITY OF A CLASS OF GENERALIZED POLYHEDRA

Schulte — Degree 1 Williams

Our First Collaboration

ON THE IMBEDDABILITY OF A CLASS OF GENERALIZED POLYHEDRA

Schulte

Degree ∞

Williams

Schulte Williams

Schulte Williams

Degree 1!

Kaleidoscope

Our Problem

Which finite groups arise as the automorphism groups of abstract polytopes?

Our Answer

Our Answer

All of them!

Theorem: Every finite group may be realized as the automorphism group of a finite spherical abstract polytope. Moreover, each such polytope admits a realization as the boundary complex of a convex polytope.

Posets as Polytopes

Known as **abstract polytopes**:

- Least and greatest face
- Maximal chains
- Diamond condition
- Strongly flag connected

• Complicate the surface of a suitable convex polytope:

- Complicate the surface of a suitable convex polytope:
- Treat the desired group G as a subgroup of S_n

- Complicate the surface of a suitable convex polytope:
- Treat the desired group G as a subgroup of S_n
 - Consider the orbit under G
 of a point on the simplex

- Complicate the surface of a suitable convex polytope:
- Treat the desired group G as a subgroup of S_n
 - Consider the orbit under G
 of a point on the simplex
 - Take the convex hull Q

- Complicate the surface of a suitable convex polytope:
- Treat the desired group G as a subgroup of S_n
 - Consider the orbit under G
 of a point on the simplex
 - Take the convex hull Q
 - Glue stuff onto Q, breaking symmetry

Exceptions

Exceptions

Solution for C₂

Solution for C_3

• Let S_n be the smallest symmetric group containing G

- Let S_n be the smallest symmetric group containing G
- Pick a point p inside a simplex of the barycentric subdivision of the boundary complex of Δ_{n-1}

- Let S_n be the smallest symmetric group containing G
- Pick a point p inside a simplex of the barycentric subdivision of the boundary complex of Δ_{n-1}
- Construct orbit of p under action of G

• Take the convex hull of this new set of points.

- Take the convex hull of this new set of points.
- If lucky, done.

 Take the barycentric subdivision of the boundary complex.

- Take the barycentric subdivision of the boundary complex.
- Note that we way construct a convex polytope geometrically of this combinatorial type.

 Glue crosspolytopes into the cells of the barycentric subdivision

 Glue crosspolytopes into the cells of the barycentric subdivision

• Modify the crosspolytopes:

Step 5

• Modify the crosspolytopes:

Step 5

- Modify the crosspolytopes:
 - Paste Schlegel diagrams of polytopes with just one vertex of high degree into the center-adjacent facets.

Step 5

- Modify the crosspolytopes:
 - Paste Schlegel diagrams of polytopes with just one vertex of high degree into the center-adjacent facets.
 - Paste Schlegel diagrams of simplicial polytopes with differing numbers of vertices into the central facet for each automorphism class.

Building the Barycentric Subdivision

 Is every finite group the automorphism group of a finite locally toroidal abstract 4-polytope?

- Is every finite group the automorphism group of a finite locally toroidal abstract 4-polytope?
- Can one modify our construction so that the resulting abstract polytope is simplicial or cubical?

- Is every finite group the automorphism group of a finite locally toroidal abstract 4-polytope?
- Can one modify our construction so that the resulting abstract polytope is simplicial or cubical?
- How do algebraic features of the group affect the structural features of the resulting polytope?

 Which countable infinite groups are automorphism groups of locally finite face-to-face tilings of a finitedimensional real space by topological polytopes?

- Which countable infinite groups are automorphism groups of locally finite face-to-face tilings of a finitedimensional real space by topological polytopes?
 - How about tiling by homeomorphic copies of convex polytopes?

- Which countable infinite groups are automorphism groups of locally finite face-to-face tilings of a finitedimensional real space by topological polytopes?
 - How about tiling by homeomorphic copies of convex polytopes?
 - How about finitely generated infinite groups?

Köszönöm!

Alles Gute zum Geburtstag Egon! Boldog születésnapot Karoly!

- 1. Margaret M. Bayer. *Barycentric subdivisions*. Pacific J. Math., 135(1):1–16, 1988.
- 2. H. S. M. Coxeter. *Regular Polytopes*. Dover Publications, 1973.
- 3. Andreas Dress. *A combinatorial theory of Grünbaum's new regular polyhedra, part II: Complete enumeration.* Aequationes Mathematicae, 29:222–243, 1985.
- 4. Branko Grünbaum. Regular polyhedra—old and new. Aequationes Math., 16(1-2):1–20, 1977.
- 5. Branko Grünbaum. *Convex polytopes*. Springer- Verlag, New York, second edition, 2003.
- 6. Branko Gr<u>unbaum and G. C. Shephard. *Tilings and patterns*. W. H. Freeman and Company, New York, 1989. An introduction.</u>
- 7. Peter McMullen and Egon Schulte. *Abstract Regular Polytopes*. Cambridge University Press, 2002.
- 8. B. Monson and Egon Schulte. *Finite polytopes have finite regular covers*. J. Algebraic Combin., 40(1):75–82, 2014.
- 9. Daniel Pellicer. *Developments and open problems on chiral polytopes*. Ars Math. Contemp., 5(2):333–354, 2012.