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Our Problem

Which finite groups arise as the
automorphism groups of abstract
polytopes”?




Our Answer




Our Answer

All of them!

Theorem: Every finite group may be realized as the
automorphism group of a finite spherical abstract
polytope. Moreover, each such polytope admits a
realization as the boundary complex of a convex

polytope.




Posets as
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The Big Idea

e Complicate the surface of a
suitable convex polytope:

* Jreat the desired group G as a
subgroup of &

e Consider the orbit under G
of a point on the simplex

* Jake the convex hull Q

e Glue stuff onto Q, breaking
symmetry
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Step 1

* Let S be the smallest
symmetric group containing G

* Pick a point p inside a simplex
of the barycentric subdivision

of the boundary complex of
An-l

e Construct orbit of p under
action of G




e Take the convex hull of this
new set of points.




e Take the convex hull of this
new set of points.

* |f lucky, done.




* Take the barycentric
subdivision of the boundary
complex.




* Take the barycentric
subdivision of the boundary
complex.

* Note that we way construct a
convex polytope geometrically
of this combinatorial type.










Step 4

e Glue crosspolytopes into the
cells of the barycentric
subdivision
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Step 5

* Modity the crosspolytopes:

* Paste Schlegel diagrams of
polytopes with just one
vertex of high degree into
the center-adjacent facets.

e Paste Schlegel diagrams of
simplicial polytopes with
differing numbers of vertices
into the central facet for
each automorphism class.
















Bullding the
Barycentric subdivision
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Open Questions

e |s every finite group the automorphism group of a
finite locally toroidal abstract 4-polytope?

e Can one modify our construction so that the
resulting abstract polytope is simplicial or cubical?

 How do algebraic features of the group affect the
structural features of the resulting polytope”




* Which countable infinite groups are automorphism
groups of locally finite face-to-tace tilings of a finite-
dimensional real space by topological polytopes?
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* Which countable infinite groups are automorphism
groups of locally finite face-to-tace tilings of a finite-
dimensional real space by topological polytopes?

 How about tiling by homeomorphic copies of
convex polytopes?

 How about finitely generated infinite groups?




KOSzonom!

Alles Gute zum Geburtstag Egon!
Boldog sztiletesnapot Karoly!
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