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A Brief Outline

• On collaborating with Egon 

• Our problem 

• Our solution for abstract polytopes 

• Our method for constructing convex realizations
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Subsequent Attempts

Schulte Williams
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Kaleidoscope



Our Problem

Which finite groups arise as the 
automorphism groups of abstract 

polytopes?



Our Answer



Our Answer

All of them!
Theorem: Every finite group may be realized as the 
automorphism group of a finite spherical abstract 
polytope. Moreover, each such polytope admits a 
realization as the boundary complex of a convex 
polytope.



Posets as 
Polytopes
Known as abstract 
polytopes:
• Least and greatest 

face
• Maximal chains
• Diamond 

condition 
• Strongly flag 

connected
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The Big Idea
• Complicate the surface of a 

suitable convex polytope:

• Treat the desired group G as a 
subgroup of Sn

• Consider the orbit under G 
of a point on the simplex

• Take the convex hull Q

• Glue stuff onto Q, breaking 
symmetry
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Step 1

• Let Sn be the smallest 
symmetric group containing G

• Pick a point p inside a simplex 
of the barycentric subdivision 
of the boundary complex of 
Δn-1

• Construct orbit of p under 
action of G



Step 2
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Step 2

• Take the convex hull of this 
new set of points.

• If lucky, done.



Step 3

• Take the barycentric 
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complex.



Step 3

• Take the barycentric 
subdivision of the boundary 
complex.

• Note that we way construct a 
convex polytope geometrically 
of this combinatorial type.
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Step 5
• Modify the crosspolytopes:

• Paste Schlegel diagrams of 
polytopes with just one 
vertex of high degree into 
the center-adjacent facets.

• Paste Schlegel diagrams of 
simplicial polytopes with 
differing numbers of vertices 
into the central facet for 
each automorphism class.











Building the 
Barycentric Subdivision
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Open Questions

• Is every finite group the automorphism group of a 
finite locally toroidal abstract 4-polytope?

• Can one modify our construction so that the 
resulting abstract polytope is simplicial or cubical?

• How do algebraic features of the group affect the 
structural features of the resulting polytope?
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• Which countable infinite groups are automorphism 
groups of locally finite face-to-face tilings of a finite-
dimensional real space by topological polytopes?

• How about tiling by homeomorphic copies of 
convex polytopes?

• How about finitely generated infinite groups?



Köszönöm!
Alles Gute zum Geburtstag Egon! 

Boldog születésnapot Karoly!
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