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Graphs are the main object of this talk.

t tt t t
t
t
t t

Graphs can be edge-coloured:

t tt t t
t
t
t t

(all distinct colours for any vertex)



Graphs are the main object of this talk.

t tt t t
t
t
t t

Graphs can be edge-coloured:

t tt t t
t
t
t t

(all distinct colours for any vertex)



Chromatic index (usually q or χ′):
least number of colours needed.

t tt t
q = 2

t tt t t
q = 3



Locally, for each vertex we have a coloured star.
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A coloured star, on a given vertex v, is an injective map

γv : Sv = {edges containing v} −→ {colours} ⊆ N

This is somewhat analogous to a local chart of a manifold.



Locally, for each vertex we have a coloured star.

t tt t t
t
t
t t�������

�������

A coloured star, on a given vertex v, is an injective map

γv : Sv = {edges containing v} −→ {colours} ⊆ N

This is somewhat analogous to a local chart of a manifold.



t t
t

������
��v
v’

E

�
�
���

Z
Z
ZZ~γv

γv ′

{1, 2, 3, 4, 5}
{2, 4, 5}

γv and γv ′ are compatible maps

(they assign the same colour to the edge E).

The two maps coincide on the intersection Sv ∩ Sv ′ = {E}.

⇔ γv ′ ◦ γ−1v (γv (Sv ∩ Sv ′)) −→ N is the inclusion map

(simply sending 2 to 2)
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More generally, for a multigraph (multiple edges allowed):
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γv ′

{1, 2, 3, 4, 5, 6, 7}
{2, 4, 5, 6, 7}

again γv ′ ◦ γ−1v (γv (Sv ∩ Sv ′)) −→ N is the inclusion map .

(now the domain is {2, 6, 7})



The analogy with manifolds is now easy to draw.
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Z
ZZ~

ϕi
ϕj

Ui Uj

R2 R2

ϕi , ϕj are homeomorphisms (local charts).

ϕj ◦ ϕ−1i (ϕi(Ui ∩ Uj)) −→ R2 is a differentiable map[[
γv ◦ γ−1u (γu(Su ∩ Sv )) −→ N is the inclusion map

]]



Let G be a graph of degree∗ ∆.
(∗ largest number of edges containing a vertex, over all vertices)

Vizing’s Theorem:
Least number of colours for an edge colouring ∈ {∆,∆ + 1}.

So we can give the following

Definition
Let v be a vertex of G . A neighborhood of v is the set Sv of all
edges containing v . A local chart on v is an injective map
γv : Sv → {1, 2, ...,∆ + 1}. An atlas on G is a set of local charts
{γv}v∈V such that γv ′ ◦ γ−1v : γv (Sv ∩ Sv ′)→ {1, 2, ...,∆ + 1} is
the inclusion map, for any adjacent vertices v , v ′.

(similarly, for multigraphs – generalised Vizing’s Theorem...)
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For example, this graph has ∆ = 3 and requires 4 colours.
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Proof: untie the two upper edges.

r rr rr r
Now try to use only 3 colours...

r rr rr r
⇒ colour red is necessary at both ends.
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Using the language of manifolds...
we are extending an atlas, starting from a local chart:
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r rr rr rn
STOP: in the end we cannot eventually identify the extremes.
This sounds like a well known phenomenon, for manifolds!
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The analogy is provided by the concept of orientation:

Take a disk ◦ whose other side is •.

Cover a strip, then identify the extremal edges of the strip.

nnnnnn... nnn nnvv n~ k
v

The second identification is not allowed
(if are looking for a global orientation)
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“Non-orientable” ←→ 4 colours needed (as above)
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Vizing’s Theorem ⇒ CLASS 1 CLASS 2

∆ colours ∆ + 1 colours

“ORIENTABILITY”...... YES NO
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Also for graphs, orientability depends on

the way we identify the extremal edges.

Degree 2: even more easy to see than with degree 3.
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In the degree-3 case, imagine to append two extremal edges.
Orientability depends on the way we identify them.

r r
r rrrXXXXXXrr ���

4 colours needed

r r
r rrr XXXXXX rr ���

3 colours suffice

Again a clear resemblance with the Möbius strip !



In the degree-3 case, imagine to append two extremal edges.
Orientability depends on the way we identify them.

r r
r rrrXXXXXXrr ���

4 colours needed

r r
r rrr XXXXXX rr ���

3 colours suffice

Again a clear resemblance with the Möbius strip !



Orientability gives a new way of looking at critical graphs.

A graph of degree ∆ is (edge)-critical if:

• it requires ∆ + 1 colours;

• after removing any edge, the required colours are ∆.

(so it passes from class 2 to class 1 whenever we remove an edge)
(⇔ it becomes orientable whenever we remove an edge)
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Critical graphs still provide many challenging problems.

22 vertices are the least for a 3-critical graph of even order
(Goldberg 1981, Brinkmann-Steffen 1997).

18 vertices are the least for a 4-critical graph of even order
(Chetwynd 1984, Fiol ind.).

Are there critical graphs with 16 vertices? (open)

Critical graphs with at most 14 vertices are classified (Jacobsen
1974, Fiorini and Wilson 1977, Chetwind and Yap 1997,
Grünewald and Steffen 1999, ...).

Constructions of critical graphs often require a computer aid.
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Grünewald and Steffen 1999, ...).

Constructions of critical graphs often require a computer aid.



I.T. Jacobsen, On critical graphs with chromatic index 4, Discr.
Math. 9 (1974), pp. 265-276.
Classification of 3-critical graphs with 5, 7, 9 vertices.
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Using the language of orientable atlases, we get

an alternative classification.

Apparently “distant” graphs become now of the same type.

Just a few patterns describe almost all graphs.
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Key concept:
Transmission of colours from one extreme to the other.

Extremal edges need the same colour ⇒ LOSS of orientability
after the identification.
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Transmission can be recognised (less easily) also in B16 and B17.

The last graph, J18 , is an exception.

It is not that comfortable to describe a transmission.

B18 has only 12 edges!
(Criticality is more “structural” than in the other cases.)
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Nonetheless, also B18 has the “Möbius strip” syndrome:
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To obtain B18: twist and then identify the two edges.



If we do not twist, we have an orientable graph:
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B18 has a special role in larger critical graphs (13 vertices).

Some projects:

� Constructing families of 3-critical graphs using polygons;

� Using the language of atlases in a more effective way;

� What happens with k-critical graphs, k ≥ 4?
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The above ideas have been collected in a recent paper (see the
journal Graphs and Combinatorics).


