A rephrasing of edge colouring by local charts and orientability

Andrea Vietri ${ }^{1}$
Sapienza Università di Roma

Geosym 2015 in Veszprem

[^0]Graphs are the main object of this talk.

Graphs are the main object of this talk.

Graphs can be edge-coloured:

(all distinct colours for any vertex)

Chromatic index (usually q or χ^{\prime}): least number of colours needed.

$$
q=2
$$

$q=3$

Locally, for each vertex we have a coloured star.

A coloured star, on a given vertex v, is an injective map
$\gamma_{v}: S_{v}=\{$ edges containing $v\} \longrightarrow\{$ colours $\} \subseteq \mathbf{N}$

Locally, for each vertex we have a coloured star.

A coloured star, on a given vertex v, is an injective map
$\gamma_{v}: S_{v}=\{$ edges containing $v\} \longrightarrow\{$ colours $\} \subseteq \mathbf{N}$
This is somewhat analogous to a local chart of a manifold.

γ_{v} and $\gamma_{v^{\prime}}$ are compatible maps
(they assign the same colour to the edge \mathcal{E}).

γ_{v} and $\gamma_{v^{\prime}}$ are compatible maps
(they assign the same colour to the edge \mathcal{E}).
The two maps coincide on the intersection $S_{v} \cap S_{v^{\prime}}=\{\mathcal{E}\}$.

$$
\begin{gathered}
\Leftrightarrow \gamma_{v^{\prime}} \circ \gamma_{v}^{-1}\left(\gamma_{v}\left(S_{v} \cap S_{v^{\prime}}\right)\right) \longrightarrow \mathbf{N} \text { is the inclusion map } \\
\text { (simply sending } 2 \text { to } 2 \text {) }
\end{gathered}
$$

More generally, for a multigraph (multiple edges allowed):

$\{1,2,3,4,5,6,7\}$
again $\gamma_{v^{\prime}} \circ \gamma_{v}^{-1}\left(\gamma_{v}\left(S_{v} \cap S_{v^{\prime}}\right)\right) \longrightarrow \mathbf{N}$ is the inclusion map .
(now the domain is $\{2,6,7\}$)

The analogy with manifolds is now easy to draw.

φ_{i}, φ_{j} are homeomorphisms (local charts).
$\varphi_{j} \circ \varphi_{i}^{-1}\left(\varphi_{i}\left(U_{i} \cap U_{j}\right)\right) \longrightarrow \mathbf{R}^{2}$ is a differentiable map

$$
\left[\left[\gamma_{v} \circ \gamma_{u}^{-1}\left(\gamma_{u}\left(S_{u} \cap S_{v}\right)\right) \longrightarrow \mathbf{N} \text { is the inclusion map }\right]\right]
$$

Let G be a graph of degree* Δ.
(* largest number of edges containing a vertex, over all vertices)
Vizing's Theorem:
Least number of colours for an edge colouring $\in\{\Delta, \Delta+1\}$.

Let G be a graph of degree* Δ.
(* largest number of edges containing a vertex, over all vertices)
Vizing's Theorem:
Least number of colours for an edge colouring $\in\{\Delta, \Delta+1\}$.
So we can give the following

Definition

Let v be a vertex of G. A neighborhood of v is the set S_{v} of all edges containing v. A local chart on v is an injective map $\gamma_{v}: S_{v} \rightarrow\{1,2, \ldots, \Delta+1\}$. An atlas on G is a set of local charts $\left\{\gamma_{v}\right\}_{v \in V}$ such that $\gamma_{v^{\prime}} \circ \gamma_{v}^{-1}: \gamma_{v}\left(S_{v} \cap S_{v^{\prime}}\right) \rightarrow\{1,2, \ldots, \Delta+1\}$ is the inclusion map, for any adjacent vertices v, v^{\prime}.
(similarly, for multigraphs - generalised Vizing's Theorem...)

For example, this graph has $\Delta=3$ and requires 4 colours.

For example, this graph has $\Delta=3$ and requires 4 colours.

Proof: untie the two upper edges.

For example, this graph has $\Delta=3$ and requires 4 colours.

Proof: untie the two upper edges.

Now try to use only 3 colours...

\Rightarrow colour red is necessary at both ends.

Using the language of manifolds... we are extending an atlas, starting from a local chart:

Using the language of manifolds... we are extending an atlas, starting from a local chart:

Using the language of manifolds... we are extending an atlas, starting from a local chart:

STOP: in the end we cannot eventually identify the extremes.

Using the language of manifolds... we are extending an atlas, starting from a local chart:

STOP: in the end we cannot eventually identify the extremes. This sounds like a well known phenomenon, for manifolds!

The analogy is provided by the concept of orientation:

The analogy is provided by the concept of orientation:
Take a disk O whose other side is $\boldsymbol{\bullet}$.

The analogy is provided by the concept of orientation:
Take a disk \bigcirc whose other side is \bigcirc.
Cover a strip, then identify the extremal edges of the strip.

The second identification is not allowed (if are looking for a global orientation)
"Non-orientable" $\longleftrightarrow 4$ colours needed (as above)

"Non-orientable" $\longleftrightarrow 4$ colours needed (as above)

"Orientable" : $\longleftrightarrow 3$ colours suffice

"Non-orientable" $\longleftrightarrow 4$ colours needed (as above)

"Orientable" : $\longleftrightarrow 3$ colours suffice

Vizing's Theorem	\RightarrowCLASS 1 CLASS 2 Δ colours $\Delta+1$ colours

"ORIENTABILITY" YES NO

Also for graphs, orientability depends on the way we identify the extremal edges.

Also for graphs, orientability depends on the way we identify the extremal edges.

Degree 2: even more easy to see than with degree 3.

Non-orientable (odd cycle, 3 colours)

Orientable
(even cycle, 2 colours)

In the degree-3 case, imagine to append two extremal edges. Orientability depends on the way we identify them.

4 colours needed

3 colours suffice

In the degree-3 case, imagine to append two extremal edges. Orientability depends on the way we identify them.

Again a clear resemblance with the Möbius strip !

Orientability gives a new way of looking at critical graphs.

A graph of degree Δ is (edge)-critical if:

Orientability gives a new way of looking at critical graphs.

A graph of degree Δ is (edge)-critical if:

- it requires $\Delta+1$ colours;

Orientability gives a new way of looking at critical graphs.

A graph of degree Δ is (edge)-critical if:

- it requires $\Delta+1$ colours;
- after removing any edge, the required colours are Δ.
(so it passes from class 2 to class 1 whenever we remove an edge)
(\Leftrightarrow it becomes orientable whenever we remove an edge)

Critical graphs still provide many challenging problems.
22 vertices are the least for a 3-critical graph of even order (Goldberg 1981, Brinkmann-Steffen 1997).

Critical graphs still provide many challenging problems.
22 vertices are the least for a 3-critical graph of even order (Goldberg 1981, Brinkmann-Steffen 1997).
18 vertices are the least for a 4-critical graph of even order (Chetwynd 1984, Fiol ind.).

Critical graphs still provide many challenging problems.
22 vertices are the least for a 3-critical graph of even order (Goldberg 1981, Brinkmann-Steffen 1997).
18 vertices are the least for a 4 -critical graph of even order (Chetwynd 1984, Fiol ind.).

Are there critical graphs with 16 vertices? (open)

Critical graphs still provide many challenging problems.
22 vertices are the least for a 3-critical graph of even order (Goldberg 1981, Brinkmann-Steffen 1997).
18 vertices are the least for a 4-critical graph of even order (Chetwynd 1984, Fiol ind.).

Are there critical graphs with 16 vertices? (open)
Critical graphs with at most 14 vertices are classified (Jacobsen 1974, Fiorini and Wilson 1977, Chetwind and Yap 1997, Grünewald and Steffen 1999, ...).

Critical graphs still provide many challenging problems.
22 vertices are the least for a 3-critical graph of even order (Goldberg 1981, Brinkmann-Steffen 1997).
18 vertices are the least for a 4-critical graph of even order (Chetwynd 1984, Fiol ind.).

Are there critical graphs with 16 vertices? (open)
Critical graphs with at most 14 vertices are classified (Jacobsen 1974, Fiorini and Wilson 1977, Chetwind and Yap 1997, Grünewald and Steffen 1999, ...).
Constructions of critical graphs often require a computer aid.
I.T. Jacobsen, On critical graphs with chromatic index 4, Discr. Math. 9 (1974), pp. 265-276.
Classification of 3 -critical graphs with $5,7,9$ vertices.

Using the language of orientable atlases, we get

an alternative classification.

Apparently "distant" graphs become now of the same type.

Just a few patterns describe almost all graphs.

identification gives U

Key concept:
Transmission of colours from one extreme to the other.
Extremal edges need the same colour \Rightarrow LOSS of orientability after the identification.

"blossoming"

H_{4}

H_{3}

J_{15}

Transmission can be recognised (less easily) also in B_{16} and B_{17}.

Transmission can be recognised (less easily) also in B_{16} and B_{17}.
The last graph, J_{18}, is an exception.
It is not that comfortable to describe a transmission.
B_{18} has only 12 edges!
(Criticality is more "structural" than in the other cases.)

Nonetheless, also B_{18} has the "Möbius strip" syndrome:

To obtain B_{18} : twist and then identify the two edges.

If we do not twist, we have an orientable graph:

B_{18} has a special role in larger critical graphs (13 vertices).
B_{18} has a special role in larger critical graphs (13 vertices).

Some projects:

\diamond Constructing families of 3-critical graphs using polygons;
B_{18} has a special role in larger critical graphs (13 vertices).

Some projects:

\diamond Constructing families of 3-critical graphs using polygons;
\diamond Using the language of atlases in a more effective way;
B_{18} has a special role in larger critical graphs (13 vertices).

Some projects:

\diamond Constructing families of 3-critical graphs using polygons;
\diamond Using the language of atlases in a more effective way;
\diamond What happens with k-critical graphs, $k \geq 4$?

The above ideas have been collected in a recent paper (see the journal Graphs and Combinatorics).

[^0]: ${ }^{1}$ Dipartimento di Scienze di Base e Applicate per l'Ingegneria, via A. Scarpa 16, 00161 Roma. E-mail: andrea.vietri@sbai.uniroma1.it.

