On contact numbers of totally separable unit sphere packings

Károly Bezdek, István Szalkai, Balázs Szalkai U. Calgary, U. Pannonia, Eötvös U. Many thanks to my teachers:

Károly Bezdek

and

Károly Böröczky

Definition (G. Fejes Tóth, L. Fejes Tóth, 1973):

A packing of balls is **totally separable** if any two balls can be separated by a hyperplane of E^d, disjoint from the interior of each unit ball in the packing.

Special case: The centers of the balls are from **a** grid / lattice.

More special case: The centers are from **the** lattice \mathbb{Z}^d .

More special case: The centers are from the lattice Z^d

⇒ balls can be replaced by cubes ⇒ polyominoes
 or box-polytopes

⇒ maximal touching nu. **≡** minimal surface

 $\tau_{\rm d} = kissing \ number = {\rm max.} \ {\rm number} \ {\rm of} \ {\rm balls}, \ {\rm touching} \ {\rm one} \ {\rm fixed} \ {\rm ball},$ $c_{\rm d}(n) = contact \ number = {\rm max.} \ {\rm touching} \ {\rm number} \ {\rm of} \ n \ {\rm balls} \ {\rm in} \ {\rm E}^{\rm d},$ $c(n,d) = contact \ number \ for \ {\it totally separable packings},$ $c_{\rm c}(n,d) = contact \ number \ for \ {\it Z}^{\rm d} \ \ ({\rm balls=cubes, polyomino}).$

Clearly:

$$c_{Z}(n,d) \le c(n,d) \le c_{d}(n) \le \frac{1}{2}\tau_{d}n$$

$$c(n,d) \le dn$$

Statement: $c(n,d) \le dn$ (totally separable)


```
"kissing points" \mathbf{t_1}, ..., \mathbf{t_k} totally separable => spherical distance(\mathbf{t_i}, \mathbf{t_j}) \geq \pi/2 => k \leq 2d (equality iff \mathbf{t_1}, ..., \mathbf{t_k} form a regular inscribed cross-polytope) => "Handshaking Thm." => \mathbf{c}(n,d) \leq dn.
```

Preliminaries:

Harborth /1974/:
$$c_2(n) = [3n - \sqrt{12n - 3}]$$

Bezdek, Reid /2013/:
$$c_3(n) \le 6n - 0.926n^{\frac{2}{3}}$$

Bezdek /2002/,
$$d \ge 4$$
: $c_d(n) \le \frac{1}{2} \tau_d n - \frac{1}{2^d} \delta_d^{-\frac{d-1}{d}} n^{\frac{d-1}{d}}$

Bezdek /2014/:
$$c(n,2) = [2n - 2\sqrt{n}]$$

well known:
$$c_{Z}(n,2) = [2n - 2\sqrt{n}]$$

Alonso, Cerf /1996/:
$$c_Z(n,3) = 3n - 3n^{\frac{2}{3}} + o(n^{\frac{2}{3}})$$

open:
$$c(n,d) = c_Z(n,d)$$
 ? for $n > 2$.

where δ_d denotes the largest possible density for (infinite) packings of unit balls in E^d .

New results:

Thm 1:
$$c_{\mathbb{Z}}(n,d) \leq \lfloor dn - dn^{\frac{d-1}{d}} \rfloor$$
 $(2 \leq n,d)$

(sharp for: d=2, $\forall n$, d=3, $n=k^d=1$ arge cube, not sharp: d=3, n=5).

Thm 2:
$$c(n,d) \leq \left| dn - \frac{n^{\frac{d-1}{d}}}{2d^{\frac{d-1}{2}}} \right| \qquad n > 1, d \geq 4$$

Thm 3:
$$c(n,3) < |3n-1.346 n^{\frac{2}{3}}|$$

<u>Proofs</u> of Thm 1: $c_{\mathbb{Z}}(n,d) \leq \lfloor dn - dn^{\frac{d-1}{d}} \rfloor$

I) /elementary/: Z^d contains of levels \Rightarrow induction on d:

$$c_{\mathbf{Z}}(n,d) \leq \max_{\vec{k}} \left(\sum_{i=1}^{m} c_{\mathbf{Z}}(k_{i},d-1) + \sum_{i=1}^{m-1} \min\{k_{i},k_{i+1}\} \right)$$

$$\sum_{i=1}^{m-1} \left(\frac{k_{i} + k_{i+1}}{2} - \frac{|k_{i} - k_{i+1}|}{2} \right)$$

$$= \sum_{i=1}^{m-1} \left(\frac{k_{i} + k_{i+1}}{2} - \frac{|k_{i} - k_{i+1}|}{2} \right)$$

$$= \sum_{i=1}^{m} \left(\sum_{i=1}^{m} c_{\mathbf{Z}}(k_{i},d-1) + n - \max k_{i} \right)$$

$$\leq \max_{\vec{k}} \left(\sum_{i=1}^{m} c_{\mathbf{Z}}(k_{i},d-1) + n - \max k_{i} \right)$$
...

Proofs of Thm 1:
$$c_{\mathbb{Z}}(n,d) \leq \lfloor dn - dn^{\frac{d-1}{d}} \rfloor$$

II) /elegant/:

assume
$$\operatorname{vol}_d(P) = \operatorname{vol}_d(C)$$
 Minkowski definiton Brunn-Minkowski inequality $\operatorname{svol}_{d-1}(P) = \lim_{\epsilon \to 0^+} \frac{\operatorname{vol}_d(P + \epsilon C) - \operatorname{vol}_d(P)}{\epsilon}$
$$\geq \lim_{\epsilon \to 0^+} \frac{\left(\operatorname{vol}_d(P)^{\frac{1}{d}} + \operatorname{vol}_d(\epsilon C)^{\frac{1}{d}}\right)^d - \operatorname{vol}_d(P)}{\epsilon} \geq \operatorname{svol}_{d-1}(C)$$

the isoperimetric quotient

$$\frac{\operatorname{svol}_{d-1}(\mathbf{P})^d}{\operatorname{vol}_d(\mathbf{P})^{d-1}} \ge \frac{\operatorname{svol}_{d-1}(\mathbf{C})^d}{\operatorname{vol}_d(\mathbf{C})^{d-1}} \ge (2d)^d$$

and

$$2dn - 2c_{\mathbb{Z}}(n,d) = \operatorname{svol}_{d-1}(P) \geq 2d\operatorname{vol}_d(P)^{\frac{d-1}{d}} = 2dn^{\frac{d-1}{d}}$$

Proof of Thm 2:
$$c(n,d) \leq \left| dn - \frac{n^{\frac{d-1}{d}}}{2d^{\frac{d-1}{2}}} \right|$$
 $d \geq 4$

/0/ Notations:

We have the *totally separable* packing $\{B_i : i \in I\}$

where
$$\mathbf{B_i} = B(c_i, 1) = c_i + B(0, 1)$$
,

further let $r \cdot \mathbf{B_i} := B(c_i, r) = c_i + r \cdot B(0, 1)$ for any r > 0.

/1/ Recall: For totally separable packings maximal number 2d of "kissing points" <=> t_1 , ..., t_{2d} form a regular inscribed cross-polytope.

$$\sqrt{2}$$
 so $\sqrt{d} \cdot \mathbf{B}_i \subseteq \bigcup_{j \neq i} \sqrt{d} \cdot \mathbf{B}_j$

/3/ let m := the number of B_i having 2d "kissing points" $(m \le n)$

/4/ so
$$\text{svol}_{d-1} (\cup_i \sqrt{d} \cdot \mathbf{B}_i) \le (n-m) d^{(d-1)/2} \text{svol}_{d-1} (\mathbf{B}(0,1))$$

/5/ Osserman's (1978) isoperimetric quotient Iq(.) and -inequality

$$\begin{split} \operatorname{Iq}(\mathbf{B}^d) &= \frac{\operatorname{svol}_{d-1} \left(\operatorname{bd}(\mathbf{B}^d) \right)^d}{\operatorname{vol}_d(\mathbf{B}^d)^{d-1}} = d^d \operatorname{vol}_d(\mathbf{B}^d) \leq \\ &\leq \operatorname{Iq}(\bigcup_i \sqrt{d} \mathbf{B}_i) = \frac{\operatorname{svol}_{d-1} \left(\operatorname{bd}(\bigcup_i \sqrt{d} \mathbf{B}_i) \right)^d}{\operatorname{vol}_d(\bigcup_i \sqrt{d} \mathbf{B}_i)^{d-1}} \end{split}$$

/**6**/ se

$$n - m \ge \frac{\operatorname{svol}_{d-1}\left(\operatorname{bd}(\bigcup\sqrt{d}\mathbf{B}_i)\right)}{d^{\frac{d-1}{2}}\operatorname{svol}_{d-1}\left(\operatorname{bd}(\mathbf{B}^d)\right)}$$

. . -

$$\geq rac{n^{rac{d-1}{d}}}{d^{rac{d-1}{2}}\delta_{
m sep}(rac{\sqrt{d}}{2},d)^{rac{d-1}{d}}}$$

where $\delta_{sep}(R,d) := \max density of R-separable ball packings$

/**7**/ finally

$$c(n,d) \leq \frac{1}{2} \left(2dn - (n-m) \right)$$

$$\leq dn - \frac{1}{2d^{\frac{d-1}{2}}\delta_{\operatorname{sep}}(\frac{\sqrt{d}}{2},d)^{\frac{d-1}{d}}}n^{\frac{d-1}{d}}$$

$$< dn - \frac{1}{2d^{\frac{d-1}{2}}} n^{\frac{d-1}{d}}$$
.

/8/ **Def:** $\delta_{\text{sep}}(R,d) := \max density \text{ of } R\text{-separable ball packings}$

$$\delta_{ ext{sep}}(R,d) = \sup_{\mathcal{P}_{ ext{sep}}} \left(\limsup_{\lambda o +\infty} rac{\sum\limits_{\mathbf{B_i} \subset \mathbf{Q}_{\lambda}} ext{vol}_d(\mathbf{B_i})}{ ext{vol}_d(\mathbf{Q}_{\lambda})}
ight)$$

and a (finite or infinite) packing of balls $P = \{B_i : i \in I\}$ is called (locally) R-separable iff for each $i \in I$ the finite packing $\{B_i : B_i \subseteq RB_i\}$ is totally separable (in RB_i):

/9/ Lemma: If $\{B_i : i \le n\}$ is an **R-separable** ball packing, then

$$\delta_{ ext{sep}}(R,d) \, \geq \, rac{n ext{vol}_{oldsymbol{d}}(\mathbf{B}^{oldsymbol{d}})}{ ext{vol}_{oldsymbol{d}} \, (igcup_{i=1}^{oldsymbol{n}} 2R\mathbf{B}_i)}$$

Proof of Thm 3:

$$c(n,3)<\lfloor 3n-1.346\,n^{\frac{2}{3}}\rfloor$$

... similar but longer argument

http://arxiv.org/abs/1501.07907

accepted to: **Discrete Mathematics**

Thanks for your attention!