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K. Bezdek's contribution to Steiner minimal trees
Periodica Mathematica Hungarica Vol. 24 (2), (1992), pp. 119-122

ProBLEM. Find the smallest positive real number f(d) (if it does not exist,
then let f(d) = +o00) such that for every centrally symmetric convex body B of E¢,
d > 3 with center O and distance function dg and for every I > f(d) there exist light-
sources Ly, L, ..., L, of E*\B which illuminate B moreover, Y .ds(0, L) =1

i=1

Is f(d) < +00?
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It turns out that Bezdek's f(d) is an up-
per bound for the maximum degree of a
Steiner minimal tree in a d-dimensional
normed space!

For more, see:

S, Quantitative illumination of convex
bodies and vertex degrees of geometric
Steiner minimal trees, Mathematika, 52
(2005), 47-52.
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The Euclidean Steiner problem

Given a finite set NV of points (terminals) in Euclidean
d-space, find a shortest connected set containing them.

A solution is necessarily a tree T = (V, E) with N C V such that

1.

the angle between two edges with the same endpoint is > 120°

2. all degrees are at most 3
3.
4

. if a vertex has degree 3, all angles are 120° and the incidenct

the degree of each vertex in V' \ N (Steiner points) equals 3

edges are coplanar



The Euclidean Steiner problem

Given a finite set NV of points (terminals) in Euclidean
d-space, find a shortest connected set containing them.

A solution is necessarily a tree T = (V, E) with N C V such that
1. the angle between two edges with the same endpoint is > 120°
2. all degrees are at most 3
3. the degree of each vertex in V' \ N (Steiner points) equals 3
4

. if a vertex has degree 3, all angles are 120° and the incidenct
edges are coplanar

Any tree T = (V, E) with N C V that satisfies 1. to 4. above is
called a Steiner tree of N.

A Steiner tree is full if each terminal has degree 1.

Usually we can reduce problems to the case of full Steiner trees.
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3 terminals

Any candidate tree can be unfolded to a broken line.

The Steiner point D is the intersection of line B’C’ and the
circumcircle of the equilateral triangle.
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4 terminals

Given a graph structure = Steiner topology, the Melzak algorithm
(1965) finds a shortest Steiner tree of a given topology if
non-degenerate

and again note the unfolding of the original candidate tree
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The Euclidean Steiner problem is difficult

In the plane

> there is a compass-and-ruler construction (Melzak algorithm),
but there are superexponentially many topologies

IS E

x5

6 terminals: 1 x 3 x 5 x 7 (full) topologies, etc.
» NP-hard (Garey—Graham—Johnson 1977)

» there are exponential-time algorithms (Zachariasen-Winter
1999)

» [PTAS of Arora and Mitchell difficult to implement]
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Approximate Steiner trees

Thus, numerical methods are used, giving an approximate solution.
How far is its length from optimal?

Definition (Rubinstein-\WWeng—\Wormald 2006)

Given a set N of points (terminals) in R, an approximate Steiner
tree on N is a tree T = (V, E) such that

» NCV CRY,
> the degree of each terminal is at most 3, and

» the degree of each vertex in V' \ N (pseudo-Steiner points) has
degree 3.

Given € > 0, an approximate Steiner tree on N is called
c-approximate if at each pseudo-Steiner point, the three angles are
in the range [27/3 — ¢,27/3 4 ¢], and at each terminal, the angles
are at least 27/3 —¢.

(A 0-approximate Steiner tree is just a Steiner tree.)
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Approximate Steiner trees

Problem

Given n € N and € > 0, find an upper bound for the relative error
in the length of an e-approximate Steiner tree, compared to a
shortest Steiner tree of the same topology.

Let d > 2, n >3 and € > 0 be given. Let
A9(n) = {full e-approximate Steiner trees on n terminals in R?}.

For any tree T in RY, let S(T) denote the shortest tree in RY on
the terminals of T for which the topology is a contraction of the
topology of T.

: L
Define Fy(e,n) = sup{
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Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:
» ce < F3(e,n) < C(g)" for all € € (0,27/3)
> F3(g,n) > n°E for all € € (n/3,27/3)
F3(e, n) < cn?y/z for sufficiently small £ > 0
F3(e,n) < c(elogn+ £2n3) for e < n—2

» = F3(e,n) < celognfore <n3logtn

v
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There is no good upper bound for small, fixed e.

Conjecture (Rubinstein-Weng—Wormald 2006)
F3(g, n) < ce for all sufficiently small € > 0 and all n.

What about the plane?
All upper bounds for d = 3 still hold.

Fa(e, n) > ce? is trivial.
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New results

Joint work with Charl Ras and Doreen Thomas (Melbourne)
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Theorem (RST)
Ifo<e< 277—” then Fp(e,n) <
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Corollary

If e = o(1/n), then F(e, n) = O(n?e?).

If e = O(1/n?), then Fy(e,n) = O(e).

Thus, the conjecture of RWW is true in the plane for e < ¢/n?.
Theorem (RST)

If e < (logy n)~2, then Fy(e, n) = Q((log n)%€?).

Corollary

If e = (logy n)~2, then Fa(e, n) = Q(e).

Thus, we cannot expect any stronger conjecture for the plane.
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New results
Nevertheless, the conjecture is still open for “large” ¢, even for
€ = 1°, say. The best upper bound we have in the plane is:
Proposition
Ife <m/6 and n > 2 then Fy(e,n) < 2n— 4.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours,
so T is in the convex hull K of the terminals.

Each edge of T is bounded by diam(K). T has < 2n — 3 edges.
T has length > diam(K). |

In dimension d > 3, the best known bound for fixed small ¢ is
F4(e, n) = O(n?\/¢) (Rubinstein et al. 2006)

Note the following cautionary lower bound:

Proposition (RST, based on Rubinstein et al. 2006)
For all d > 2, Fy(m/3,n) = Q(log n).
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Proof of upper bound

Theorem (RST)

If0<5<21n then Fy(e, n) < —1.

oS ne
Proof.
Consider an e-approximate tree T in R2.
1. Unfold T into a path P using the Melzak algorithm.

2. Estimate the turns at each vertex of P in terms of the
deviations from 27/3 of the angles at pseudo-Steiner points.

3. Estimate the length of P in terms of the turns, using an old
result of Erhard Schmidt, related to the Cauchy Arm Lemma.

We already did 1.
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2. Estimate the turns in the path

Note that the sum of turns in
any subpath is at most

2e x number of Steiner points.



3. Bounding the length of a path

P1 P3 Pe
Po \<ﬁ 4 - Ps_~z7

P2

Lemma (E. Schmidt 1925)

Consider a planar polygonal line pops . .. pn with turn €; at p;
(i=1,...,n—=1). Let

= T2 fof
If K < 7, then
n—1
Z ’PiPi—i—l’
i=1 1

< .
|Popn cos k2
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Proof.
Translate all edges to the origin.

Rearrange to form a
convex path.
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3. Bounding the length of a path

Proof.
Translate all edges to the origin.

Rearrange to form a
convex path.

Length of path

J
Do Et

|AB|
|AC| + |CB| B | &,
- |AB|
1

cos /2 Thank you for your attention.
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