Approximate Steiner Trees

Konrad Swanepoel

$\int 5 \quad \begin{aligned} & \text { Department of } \\ & \text { Mathematics }\end{aligned}$
Geometry and Symmetry, Veszprém
3 July 2015

Approximate Steiner Trees

Konrad Swanepoel

Geometry and Symmetry, Veszprém 3 July 2015

Happy Birthday, Karoly and Egon!

K. Bezdek's contribution to Steiner minimal trees

Periodica Mathematica Hungarica Vol. 24 (2), (1992), pp. 119-122
Problem. Find the smallest positive real number $f(d)$ (if it does not exist, then let $f(d)=+\infty$) such that for every centrally symmetric convex body \mathbf{B} of \mathbf{E}^{d}, $d \geq 3$ with center O and distance function d_{B} and for every $l>f(d)$ there exist lightsources $L_{1}, L_{2}, \ldots, L_{n}$ of $\mathbf{E}^{d} \backslash \mathbf{B}$ which illuminate \mathbf{B} moreover, $\sum_{i=1}^{n} d_{\mathbf{B}}\left(O, L_{i}\right)=l$. Is $f(d)<+\infty$?

K. Bezdek's contribution to Steiner minimal trees

Periodica Mathematica Hungarica Vol. 24 (2), (1992), pp. 119-122

Problem. Find the smallest positive real number $f(d)$ (if it does not exist, then let $f(d)=+\infty$) such that for every centrally symmetric convex body \mathbf{B} of \mathbf{E}^{d}, $d \geq 3$ with center O and distance function d_{B} and for every $l>f(d)$ there exist lightsources $L_{1}, L_{2}, \ldots, L_{n}$ of $\mathbf{E}^{d} \backslash \mathbf{B}$ which illuminate \mathbf{B} moreover, $\sum_{i=1}^{n} d_{\mathrm{B}}\left(O, L_{i}\right)=l$. Is $f(d)<+\infty$?

It turns out that Bezdek's $f(d)$ is an upper bound for the maximum degree of a Steiner minimal tree in a d-dimensional normed space!

For more, see:
S, Quantitative illumination of convex bodies and vertex degrees of geometric Steiner minimal trees, Mathematika, 52 (2005), 47-52.

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

The Euclidean Steiner problem

Given a finite set N of points (terminals) in Euclidean d-space, find a shortest connected set containing them.

A solution is necessarily a tree $T=(V, E)$ with $N \subseteq V$ such that 1. the angle between two edges with the same endpoint is $\geq 120^{\circ}$
2. all degrees are at most 3
3. the degree of each vertex in $V \backslash N$ (Steiner points) equals 3
4. if a vertex has degree 3 , all angles are 120° and the incidenct edges are coplanar

The Euclidean Steiner problem

Given a finite set N of points (terminals) in Euclidean d-space, find a shortest connected set containing them.

A solution is necessarily a tree $T=(V, E)$ with $N \subseteq V$ such that

1. the angle between two edges with the same endpoint is $\geq 120^{\circ}$
2. all degrees are at most 3
3. the degree of each vertex in $V \backslash N$ (Steiner points) equals 3
4. if a vertex has degree 3 , all angles are 120° and the incidenct edges are coplanar

Any tree $T=(V, E)$ with $N \subseteq V$ that satisfies 1 . to 4 . above is called a Steiner tree of N.

A Steiner tree is full if each terminal has degree 1. Usually we can reduce problems to the case of full Steiner trees.

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

3 terminals

3 terminals

3 terminals

Rotate $A D$ by $\pi / 3$ around D.

3 terminals

3 terminals

Any candidate tree can be unfolded to a broken line.

3 terminals

Any candidate tree can be unfolded to a broken line.

3 terminals

Any candidate tree can be unfolded to a broken line.

3 terminals

Any candidate tree can be unfolded to a broken line.

3 terminals

Any candidate tree can be unfolded to a broken line.
The Steiner point D is the intersection of line $B^{\prime} C^{\prime}$ and the circumcircle of the equilateral triangle.

Overview

```
The Euclidean Steiner problem
Fermat and Torricelli
```

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

4 terminals

Given a graph structure = Steiner topology,

4 terminals

Given a graph structure \equiv Steiner topology,

4 terminals

Given a graph structure \equiv Steiner topology,

4 terminals

Given a graph structure \equiv Steiner topology,

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate

4 terminals

Given a graph structure \equiv Steiner topology, the Melzak algorithm (1965) finds a shortest Steiner tree of a given topology if non-degenerate
and again note the unfolding of the original candidate tree

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ })$. There is again an unfolding.

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ }) . \quad$ There is again an unfolding.

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ }) . \quad$ There is again an unfolding.

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ }) . \quad$ There is again an unfolding.

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ }) . \quad$ There is again an unfolding.

The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time complexity, assuming constant time real arithmetic operations $(+,-, \times, \div, \sqrt{ }) . \quad$ There is again an unfolding.

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees

Previous results
New results

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

6 terminals: $1 \times 3 \times 5 \times 7$ (full) topologies, etc.

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

6 terminals: $1 \times 3 \times 5 \times 7$ (full) topologies, etc.

- NP-hard (Garey-Graham-Johnson 1977)

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

6 terminals: $1 \times 3 \times 5 \times 7$ (full) topologies, etc.

- NP-hard (Garey-Graham-Johnson 1977)
- there are exponential-time algorithms (Zachariasen-Winter 1999)

The Euclidean Steiner problem is difficult

In the plane

- there is a compass-and-ruler construction (Melzak algorithm), but there are superexponentially many topologies

6 terminals: $1 \times 3 \times 5 \times 7$ (full) topologies, etc.

- NP-hard (Garey-Graham-Johnson 1977)
- there are exponential-time algorithms (Zachariasen-Winter 1999)
- [PTAS of Arora and Mitchell difficult to implement]

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

The Euclidean Steiner problem is difficult

In 3-space the problem becomes non-constructable, even unsolvable by radicals (Smith 1992, Mehlhos 2000, Rubinstein et al. 2004)

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

Approximate Steiner trees

Thus, numerical methods are used, giving an approximate solution. How far is its length from optimal?

Approximate Steiner trees

Thus, numerical methods are used, giving an approximate solution. How far is its length from optimal?

Definition (Rubinstein-Weng-Wormald 2006)
Given a set N of points (terminals) in \mathbb{R}^{d}, an approximate Steiner tree on N is a tree $T=(V, E)$ such that

- $N \subseteq V \subset \mathbb{R}^{d}$,
- the degree of each terminal is at most 3 , and
- the degree of each vertex in $V \backslash N$ (pseudo-Steiner points) has degree 3.

Approximate Steiner trees

Thus, numerical methods are used, giving an approximate solution. How far is its length from optimal?

Definition (Rubinstein-Weng-Wormald 2006)

Given a set N of points (terminals) in \mathbb{R}^{d}, an approximate Steiner tree on N is a tree $T=(V, E)$ such that

- $N \subseteq V \subset \mathbb{R}^{d}$,
- the degree of each terminal is at most 3 , and
- the degree of each vertex in $V \backslash N$ (pseudo-Steiner points) has degree 3.

Given $\varepsilon \geq 0$, an approximate Steiner tree on N is called ε-approximate if at each pseudo-Steiner point, the three angles are in the range $[2 \pi / 3-\varepsilon, 2 \pi / 3+\varepsilon]$, and at each terminal, the angles are at least $2 \pi / 3-\varepsilon$.
(A 0-approximate Steiner tree is just a Steiner tree.)

Approximate Steiner trees

Problem
Given $n \in \mathbb{N}$ and $\varepsilon>0$, find an upper bound for the relative error in the length of an ε-approximate Steiner tree, compared to a shortest Steiner tree of the same topology.

Approximate Steiner trees

Problem

Given $n \in \mathbb{N}$ and $\varepsilon>0$, find an upper bound for the relative error in the length of an ε-approximate Steiner tree, compared to a shortest Steiner tree of the same topology.

Let $d \geq 2, n \geq 3$ and $\varepsilon \geq 0$ be given. Let
$\mathcal{A}_{\varepsilon}^{d}(n)=\left\{\right.$ full ε-approximate Steiner trees on n terminals in $\left.\mathbb{R}^{d}\right\}$.

Approximate Steiner trees

Problem

Given $n \in \mathbb{N}$ and $\varepsilon>0$, find an upper bound for the relative error in the length of an ε-approximate Steiner tree, compared to a shortest Steiner tree of the same topology.

Let $d \geq 2, n \geq 3$ and $\varepsilon \geq 0$ be given. Let
$\mathcal{A}_{\varepsilon}^{d}(n)=\left\{\right.$ full ε-approximate Steiner trees on n terminals in $\left.\mathbb{R}^{d}\right\}$.
For any tree T in \mathbb{R}^{d}, let $S(T)$ denote the shortest tree in \mathbb{R}^{d} on the terminals of T for which the topology is a contraction of the topology of T.

Approximate Steiner trees

Problem

Given $n \in \mathbb{N}$ and $\varepsilon>0$, find an upper bound for the relative error in the length of an ε-approximate Steiner tree, compared to a shortest Steiner tree of the same topology.

Let $d \geq 2, n \geq 3$ and $\varepsilon \geq 0$ be given. Let
$\mathcal{A}_{\varepsilon}^{d}(n)=\left\{\right.$ full ε-approximate Steiner trees on n terminals in $\left.\mathbb{R}^{d}\right\}$.
For any tree T in \mathbb{R}^{d}, let $S(T)$ denote the shortest tree in \mathbb{R}^{d} on the terminals of T for which the topology is a contraction of the topology of T.

Define $\quad F_{d}(\varepsilon, n)=\sup \left\{\frac{L(T)-L(S(T))}{(L(S(T))}: T \in \mathcal{A}_{\varepsilon}^{d}(n)\right\}$.

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$
- $F_{3}(\varepsilon, n)<c\left(\varepsilon \log n+\varepsilon^{2} n^{3}\right)$ for $\varepsilon<n^{-2}$

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$
- $F_{3}(\varepsilon, n)<c\left(\varepsilon \log n+\varepsilon^{2} n^{3}\right)$ for $\varepsilon<n^{-2}$
- $\Longrightarrow F_{3}(\varepsilon, n)<c \varepsilon \log n$ for $\varepsilon<n^{-3} \log ^{-1} n$

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$
- $F_{3}(\varepsilon, n)<c\left(\varepsilon \log n+\varepsilon^{2} n^{3}\right)$ for $\varepsilon<n^{-2}$
- $\Longrightarrow F_{3}(\varepsilon, n)<c \varepsilon \log n$ for $\varepsilon<n^{-3} \log ^{-1} n$

There is no good upper bound for small, fixed ε.

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$
- $F_{3}(\varepsilon, n)<c\left(\varepsilon \log n+\varepsilon^{2} n^{3}\right)$ for $\varepsilon<n^{-2}$
- $\Longrightarrow F_{3}(\varepsilon, n)<c \varepsilon \log n$ for $\varepsilon<n^{-3} \log ^{-1} n$

There is no good upper bound for small, fixed ε.
Conjecture (Rubinstein-Weng-Wormald 2006)
$F_{3}(\varepsilon, n)<c \varepsilon$ for all sufficiently small $\varepsilon>0$ and all n.

Previous results of Rubinstein et al. 2006

They only considered dimensions 3 and higher:

- $c \varepsilon<F_{3}(\varepsilon, n)<C(\varepsilon)^{n}$ for all $\varepsilon \in(0,2 \pi / 3)$
- $F_{3}(\varepsilon, n)>n^{c(\varepsilon)}$ for all $\varepsilon \in(\pi / 3,2 \pi / 3)$
- $F_{3}(\varepsilon, n)<c n^{2} \sqrt{\varepsilon}$ for sufficiently small $\varepsilon>0$
- $F_{3}(\varepsilon, n)<c\left(\varepsilon \log n+\varepsilon^{2} n^{3}\right)$ for $\varepsilon<n^{-2}$
- $\Longrightarrow F_{3}(\varepsilon, n)<c \varepsilon \log n$ for $\varepsilon<n^{-3} \log ^{-1} n$

There is no good upper bound for small, fixed ε.
Conjecture (Rubinstein-Weng-Wormald 2006)
$F_{3}(\varepsilon, n)<c \varepsilon$ for all sufficiently small $\varepsilon>0$ and all n.
What about the plane?
All upper bounds for $d=3$ still hold.
$F_{2}(\varepsilon, n)>c \varepsilon^{2}$ is trivial.

Overview

The Euclidean Steiner problem

Fermat and Torricelli

Melzak algorithm

The Euclidean Steiner problem is difficult

Approximate Steiner trees
Previous results
New results

New results

Joint work with Charl Ras and Doreen Thomas (Melbourne)

New results

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.

New results

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.
Corollary
If $\varepsilon=o(1 / n)$, then $F_{2}(\varepsilon, n)=O\left(n^{2} \varepsilon^{2}\right)$.
If $\varepsilon=O\left(1 / n^{2}\right)$, then $F_{2}(\varepsilon, n)=O(\varepsilon)$.
Thus, the conjecture of RWW is true in the plane for $\varepsilon<c / n^{2}$.

New results

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.
Corollary
If $\varepsilon=o(1 / n)$, then $F_{2}(\varepsilon, n)=O\left(n^{2} \varepsilon^{2}\right)$.
If $\varepsilon=O\left(1 / n^{2}\right)$, then $F_{2}(\varepsilon, n)=O(\varepsilon)$.
Thus, the conjecture of RWW is true in the plane for $\varepsilon<c / n^{2}$.
Theorem (RST)
If $\varepsilon \leq\left(\log _{2} n\right)^{-2}$, then $F_{2}(\varepsilon, n)=\Omega\left((\log n)^{2} \varepsilon^{2}\right)$.
Corollary

New results

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.
Corollary
If $\varepsilon=o(1 / n)$, then $F_{2}(\varepsilon, n)=O\left(n^{2} \varepsilon^{2}\right)$.
If $\varepsilon=O\left(1 / n^{2}\right)$, then $F_{2}(\varepsilon, n)=O(\varepsilon)$.
Thus, the conjecture of RWW is true in the plane for $\varepsilon<c / n^{2}$.
Theorem (RST)
If $\varepsilon \leq\left(\log _{2} n\right)^{-2}$, then $F_{2}(\varepsilon, n)=\Omega\left((\log n)^{2} \varepsilon^{2}\right)$.
Corollary
If $\varepsilon=\left(\log _{2} n\right)^{-2}$, then $F_{2}(\varepsilon, n)=\Omega(\varepsilon)$.
Thus, we cannot expect any stronger conjecture for the plane.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.
Each edge of T is bounded by $\operatorname{diam}(K)$.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.
Each edge of T is bounded by $\operatorname{diam}(K) . T$ has $\leq 2 n-3$ edges.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.
Each edge of T is bounded by $\operatorname{diam}(K)$. T has $\leq 2 n-3$ edges. T has length $\geq \operatorname{diam}(K)$.

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition

If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.
Each edge of T is bounded by $\operatorname{diam}(K)$. T has $\leq 2 n-3$ edges. T has length $\geq \operatorname{diam}(K)$.
In dimension $d \geq 3$, the best known bound for fixed small ε is $F_{d}(\varepsilon, n)=O\left(n^{2} \sqrt{\varepsilon}\right)$ (Rubinstein et al. 2006)

New results

Nevertheless, the conjecture is still open for "large" ε, even for $\varepsilon=1^{\circ}$, say. The best upper bound we have in the plane is:

Proposition
If $\varepsilon \leq \pi / 6$ and $n \geq 2$ then $F_{2}(\varepsilon, n) \leq 2 n-4$.
Proof.
Let T be a Steiner tree.
All Steiner points are in the convex hull of their neighbours, so T is in the convex hull K of the terminals.
Each edge of T is bounded by $\operatorname{diam}(K) . T$ has $\leq 2 n-3$ edges.
T has length $\geq \operatorname{diam}(K)$.
In dimension $d \geq 3$, the best known bound for fixed small ε is $F_{d}(\varepsilon, n)=O\left(n^{2} \sqrt{\varepsilon}\right)$ (Rubinstein et al. 2006)
Note the following cautionary lower bound:
Proposition (RST, based on Rubinstein et al. 2006)
For all $d \geq 2, F_{d}(\pi / 3, n)=\Omega(\log n)$.

Proof of upper bound

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.

Proof of upper bound

Theorem (RST)
If $0<\varepsilon<\frac{\pi}{2 n}$ then $F_{2}(\varepsilon, n) \leq \frac{1}{\cos n \varepsilon}-1$.
Proof.
Consider an ε-approximate tree T in \mathbb{R}^{2}.

1. Unfold T into a path P using the Melzak algorithm.
2. Estimate the turns at each vertex of P in terms of the deviations from $2 \pi / 3$ of the angles at pseudo-Steiner points.
3. Estimate the length of P in terms of the turns, using an old result of Erhard Schmidt, related to the Cauchy Arm Lemma.
We already did 1 .
4. Estimate the turns in the path

5. Estimate the turns in the path

6. Estimate the turns in the path

7. Estimate the turns in the path

8. Estimate the turns in the path

9. Estimate the turns in the path

10. Estimate the turns in the path

11. Estimate the turns in the path

12. Estimate the turns in the path

13. Estimate the turns in the path

3. Bounding the length of a path

Lemma (E. Schmidt 1925)
Consider a planar polygonal line $p_{0} p_{1} \ldots p_{n}$ with turn ε_{i} at p_{i} ($i=1, \ldots, n-1$). Let

$$
\kappa=\max _{1 \leq i<j \leq n-1}\left|\sum_{t=i}^{j} \varepsilon_{t}\right| .
$$

If $\kappa<\pi$, then

$$
\frac{\sum_{i=1}^{n-1}\left|p_{i} p_{i+1}\right|}{\left|p_{0} p_{n}\right|} \leq \frac{1}{\cos \kappa / 2} .
$$

3. Bounding the length of a path Proof.

4. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.
Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.

3. Bounding the length of a path

Proof.

Translate all edges to the origin.
Rearrange to form a convex path.

3. Bounding the length of a path

Proof.
 Translate all edges to the origin.

Rearrange to form a convex path.

3. Bounding the length of a path

Proof.
 Translate all edges to the origin.

Length of path
$\leq \frac{|A C|+|C B|}{|A B|}$

$$
\kappa=\max _{1 \leq i<j \leq n-1}\left|\sum_{t=i}^{j} \varepsilon_{t}\right|
$$

3. Bounding the length of a path

3. Bounding the length of a path

