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RESEARCHPROBLEMS 
EDITED BY I. JUHkSZ 

In this ~01~ Periodica Mathematics Hunparka publishes eurrent nsearchprobl~ whose 
proposera believe then to be within the reach of existing methods. Matmaeripts should preferably 
contain the backgmund of the problem and all referencea lcuown to the author. The length of the 
manuaeript should not exceed two double-spaced type-written pagea. 

46l Let B be a convex body of Ed, d 2 1 (i.e. a compact convex subset of the 
d-dimensional Euclidean space Ed with non-empty interior). We say that a point i.e. 
a l~ht-source L E Ed\B ~llu~nat~ the boundary point P of B if and only if the ray 
emanating from P having direction vector s has a non-empty intersection with the 
interior of B. Furthermore, we say that the light-sources {Lr, Lz, . . . , Ln} C Ed\B 
illuminate B if and only if every boundary point of B is illuminated by at least one 
of the light-sources L1 , L2, . . . , L,. It is well-known ([1], [3], [4] and [6]) that any 
convex domain B of E2 can be illuminated by four light-sources of E2\B. If B is a 
centrally symmetric convex domain of E2, then for following result is a quantitive 
improvement of the mentioned claim. 

PROPOSITION 1, Let B be a ce~t~ll~ ~~rnrnef~c conned domain ofE2 vrith 
center 0 and distance function dg and let 1 > 6. Then there ezist light-sources LI, 
LIZ, Ls and Lq of E2\B such that they illuminate B and C& dn(0, Li) = 1. 

PROOF. Without loss of generality we may assume that 0 is the origin of 
E2. The polar set B* = {X E. E2](ox,~) 5 1 for all Y E B} of B is a centrally 
symmetric convex domain with center 0. Let hn= be the supporting function of 
B’. Furthermore, let P* = Pf P; P; Pz be the parallelogram inscribed in B* with 
supporting function hp= the area of which is as large possible. This can be chosen 
so that the vertices PC, P; , Pi and P$ are extreme points of B* and 0 is the center 
of P* as well. Finally, let nlr ~~~ 2 and ~14 be the outer normal vectors of the sides 
Pip,‘, P,*P$, P<Pl and P,*PT. (This means among others that ]1~]] = ]]z2]] = 
llB3ll = IlE4H = 1-I Th en an easy elementary geometry shows that 

If now the parallelogram P with vertices PI, P2, 4 and Pa is the polar set of P*, 
then 

‘The work wss supp orted by Hung. Nat. Found. for Sci. Research No. 326-0213. 
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~B*(O,~l)+~B’(O,~2)+dB*(O,~S) +dB*(O&) = 

As P contains B moving the vertices PI, P2, P3 and P4 “slightly further from 0” 
we get the light-sources LI, La, LJ and Lq. n 

REMARK 1. If B is a centrally symmetric hexagon of E’, then it is easy to 
check that 6 cannot be replaced by any number smaller than 6. 

Generalizing the question of Proposition 1 we pose the following 

PROBLEM. Find the smallest positive real number f(d) (if it does not exist, 
then let f(d) = + 00 such that for every centrally symmetric convex body B of Ed, ) 
d 2 3 with center 0 and distance function dB and for every 1 > f(d) there exist light- 
sources Ll,Ls,..., L, of Ed\B which illuminate B moreover, & dB(O, Li) = 1. 
Is f(d) < +m? 

REMARK 2. We have proved that f(2) = 6. If one could prove that f(3) is 
finite, then one would get a quantitive improvement of the known result ([l], [2] and 
[5]) that any 3-dimensional centrally symmetric convex body can be illuminated by 
8 light-sources. 

Surprisingly enough the Problem looks even harder for centrally symmetric 
smooth convex bodies. However, in this case one can pose the following 

CONJECTURE. Let B be a centrally symmetric smooth convex body of Ed, 
d 1 3 with center 0 and distance function dg and let 1 > d(d + 1). Then there exist 
light-sources LI , Lz, . . . , l2d of Ed\B which illuminate B moreover, ct$ dB(O, li) = 
1. 

REMARK 3. It is easy to see that the Conjecture is true for 1 > 2d2. 

Finally, we mention that a rather simple application of Proposition 1 yields 

PROPOSITION 2. The Conjecture is true for d = 3 and I> 15. 
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The Euclidean Steiner problem
Given a finite set N of points (terminals) in Euclidean
d-space, find a shortest connected set containing them.

A solution is necessarily a tree T = (V ,E ) with N ⊆ V such that
1. the angle between two edges with the same endpoint is ≥ 120◦

2. all degrees are at most 3
3. the degree of each vertex in V \ N (Steiner points) equals 3
4. if a vertex has degree 3, all angles are 120◦ and the incidenct

edges are coplanar

Any tree T = (V ,E ) with N ⊆ V that satisfies 1. to 4. above is
called a Steiner tree of N.

A Steiner tree is full if each terminal has degree 1.
Usually we can reduce problems to the case of full Steiner trees.
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3 terminals
A

B

C

D

D
A′

Rotate AD by π/3 around D.

Rotate BD by −π/3 around A.
A′

B ′

Any candidate tree can be unfolded to a broken line.

The Steiner point D is the intersection of line B ′C ′ and the
circumcircle of the equilateral triangle.
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4 terminals

Given a graph structure ≡ Steiner topology,

the Melzak algorithm
(1965) finds a shortest Steiner tree of a given topology if
non-degenerate

and again note the unfolding of the original candidate tree
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The Melzak algorithm

As modified by Hwang (1976), the Melzak algorithm has linear time
complexity, assuming constant time real arithmetic operations
(+,−,×,÷,√). There is again an unfolding.
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The Euclidean Steiner problem is difficult
In the plane
I there is a compass-and-ruler construction (Melzak algorithm),

but there are superexponentially many topologies

1 ×3

×5

6 terminals: 1× 3× 5× 7 (full) topologies, etc.
I NP-hard (Garey–Graham–Johnson 1977)
I there are exponential-time algorithms (Zachariasen–Winter

1999)
I [PTAS of Arora and Mitchell difficult to implement]
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Approximate Steiner trees
Thus, numerical methods are used, giving an approximate solution.
How far is its length from optimal?

Definition (Rubinstein–Weng–Wormald 2006)
Given a set N of points (terminals) in Rd , an approximate Steiner
tree on N is a tree T = (V ,E ) such that
I N ⊆ V ⊂ Rd ,
I the degree of each terminal is at most 3, and
I the degree of each vertex in V \ N (pseudo-Steiner points) has

degree 3.

Given ε ≥ 0, an approximate Steiner tree on N is called
ε-approximate if at each pseudo-Steiner point, the three angles are
in the range [2π/3− ε, 2π/3 + ε], and at each terminal, the angles
are at least 2π/3− ε.
(A 0-approximate Steiner tree is just a Steiner tree.)
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Approximate Steiner trees

Problem
Given n ∈ N and ε > 0, find an upper bound for the relative error
in the length of an ε-approximate Steiner tree, compared to a
shortest Steiner tree of the same topology.

Let d ≥ 2, n ≥ 3 and ε ≥ 0 be given. Let

Ad
ε (n) = {full ε-approximate Steiner trees on n terminals in Rd}.

For any tree T in Rd , let S(T ) denote the shortest tree in Rd on
the terminals of T for which the topology is a contraction of the
topology of T .

Define Fd (ε, n) = sup
{
L(T )− L(S(T ))

(L(S(T ))
: T ∈ Ad

ε (n)

}
.
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Previous results of Rubinstein et al. 2006
They only considered dimensions 3 and higher:
I cε < F3(ε, n) < C (ε)n for all ε ∈ (0, 2π/3)

I F3(ε, n) > nc(ε) for all ε ∈ (π/3, 2π/3)

I F3(ε, n) < cn2√ε for sufficiently small ε > 0
I F3(ε, n) < c(ε log n + ε2n3) for ε < n−2

I =⇒ F3(ε, n) < cε log n for ε < n−3 log−1 n

There is no good upper bound for small, fixed ε.

Conjecture (Rubinstein–Weng–Wormald 2006)
F3(ε, n) < cε for all sufficiently small ε > 0 and all n.

What about the plane?

All upper bounds for d = 3 still hold.

F2(ε, n) > cε2 is trivial.
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New results
Joint work with Charl Ras and Doreen Thomas (Melbourne)



New results

Theorem (RST)

If 0 < ε <
π

2n
then F2(ε, n) ≤ 1

cos nε
− 1.

Corollary
If ε = o(1/n), then F2(ε, n) = O(n2ε2).
If ε = O(1/n2), then F2(ε, n) = O(ε).

Thus, the conjecture of RWW is true in the plane for ε < c/n2.

Theorem (RST)
If ε ≤ (log2 n)−2, then F2(ε, n) = Ω((log n)2ε2).

Corollary
If ε = (log2 n)−2, then F2(ε, n) = Ω(ε).

Thus, we cannot expect any stronger conjecture for the plane.
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New results
Nevertheless, the conjecture is still open for “large” ε, even for
ε = 1◦, say. The best upper bound we have in the plane is:

Proposition
If ε ≤ π/6 and n ≥ 2 then F2(ε, n) ≤ 2n − 4.

Proof.
Let T be a Steiner tree.

All Steiner points are in the convex hull of their neighbours,
so T is in the convex hull K of the terminals.
Each edge of T is bounded by diam(K ). T has ≤ 2n − 3 edges.
T has length ≥ diam(K ). �

In dimension d ≥ 3, the best known bound for fixed small ε is
Fd (ε, n) = O(n2√ε) (Rubinstein et al. 2006)

Note the following cautionary lower bound:

Proposition (RST, based on Rubinstein et al. 2006)
For all d ≥ 2, Fd (π/3, n) = Ω(log n).
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Proof of upper bound

Theorem (RST)

If 0 < ε <
π

2n
then F2(ε, n) ≤ 1

cos nε
− 1.

Proof.
Consider an ε-approximate tree T in R2.
1. Unfold T into a path P using the Melzak algorithm.
2. Estimate the turns at each vertex of P in terms of the

deviations from 2π/3 of the angles at pseudo-Steiner points.
3. Estimate the length of P in terms of the turns, using an old

result of Erhard Schmidt, related to the Cauchy Arm Lemma.
We already did 1. �
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2. Estimate the turns in the path
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Note that the sum of turns in
any subpath is at most
2ε× number of Steiner points.
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2ε× number of Steiner points.
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p3

p4 p5
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p7

ε1

ε2

ε3

ε4
ε5

ε6

Lemma (E. Schmidt 1925)
Consider a planar polygonal line p0p1 . . . pn with turn εi at pi
(i = 1, . . . , n − 1). Let

κ = max
1≤i<j≤n−1

∣∣∣∣∣
j∑

t=i

εt

∣∣∣∣∣ .
If κ < π, then

n−1∑
i=1
|pipi+1|

|p0pn|
≤ 1

cosκ/2
.
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A B

C
κ

κ = max
1≤i<j≤n−1

∣∣∣∣∣ j∑
t=i

εt

∣∣∣∣∣

Proof.

Translate all edges to the origin.
Rearrange to form a
convex path.

Length of path
|AB|

≤ |AC |+ |CB|
|AB|

≤ 1
cosκ/2

. �
Thank you for your attention.
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