The degree-diameter problem for vertex-transitive graphs and finite geometries

Jozef Širáň

Open University and Slovak University of Technology

Geometry and Symmetry, Veszprém

30th June 2015

Jozef Širáň Open University and Slovak UniThe degree-diameter problem for vertex-trans

30th June 2015 1 / 11

イロン イヨン イヨン イヨン

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1}$

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

[HS '60, Bannai-Ito '73, Damerell '73]: For $d \ge 3$, $k \ge 2$ we have n(d, k) = M(d, k) only if k = 2 and $d \in \{3, 7, 57\}$. (Moore graphs.)

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● のの⊙

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

[HS '60, Bannai-Ito '73, Damerell '73]: For $d \ge 3$, $k \ge 2$ we have n(d, k) = M(d, k) only if k = 2 and $d \in \{3, 7, 57\}$. (Moore graphs.)

A sample of intriguing questions:

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● のの⊙

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

[HS '60, Bannai-Ito '73, Damerell '73]: For $d \ge 3$, $k \ge 2$ we have n(d, k) = M(d, k) only if k = 2 and $d \in \{3, 7, 57\}$. (Moore graphs.)

A sample of intriguing questions:

• Is it true that for each c > 0 there are d, k with $n(d, k) \le M(d, k) - c$?

The problem: Find the largest order n(d, k) of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:

 $n(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

[HS '60, Bannai-Ito '73, Damerell '73]: For $d \ge 3$, $k \ge 2$ we have n(d, k) = M(d, k) only if k = 2 and $d \in \{3, 7, 57\}$. (Moore graphs.)

A sample of intriguing questions:

- Is it true that for each c > 0 there are d, k with $n(d, k) \le M(d, k) c$?
- Is it true that $n(d,k) > (1-\varepsilon)M(d,k)$ for all $d > d_{\varepsilon}$, $k > k_{\varepsilon}$?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

イロト 不得下 イヨト イヨト

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs. The missing Moore graph(s) Γ of degree 57 and order 3250:

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs. The missing Moore graph(s) Γ of degree 57 and order 3250: [Higman, 60's]: Γ cannot be vertex-transitive!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $Aut(\Gamma)$:

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $Aut(\Gamma)$:

• if $o \ge 3$ is odd, then either o is a prime ≤ 13 or o is in the set {15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375};

▲母 ▲ ● ▲ ● ▲ ● ▲ ● ● ● ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $Aut(\Gamma)$:

- if $o \ge 3$ is odd, then either o is a prime ≤ 13 or o is in the set {15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375};
- if o is even, then $o \in \{2, 6, 10, 14, 18, 22, 38, 50, 54, 110\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $Aut(\Gamma)$:

- if $o \ge 3$ is odd, then either o is a prime ≤ 13 or o is in the set {15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375};
- if o is even, then $o \in \{2, 6, 10, 14, 18, 22, 38, 50, 54, 110\}$.

Method: Characters of rational representations of groups and theory of equitable partitions induced by group actions.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60's]: Γ cannot be vertex-transitive! [Makhnev-Paduchikh '01]: Some restrictions on $o = |Aut(\Gamma)|$.

[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $Aut(\Gamma)$:

- if $o \ge 3$ is odd, then either o is a prime ≤ 13 or o is in the set {15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375};
- if o is even, then $o \in \{2, 6, 10, 14, 18, 22, 38, 50, 54, 110\}$.

Method: Characters of rational representations of groups and theory of equitable partitions induced by group actions.

Consequence: Bad news for attempts to construct Γ by coverings!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

'Close' approximation of the Moore bound?

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

(日) (雪) (日) (日) (日)

'Close' approximation of the Moore bound?

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics?

・ロット (雪) (日) (日) 日

'Close' approximation of the Moore bound?

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

・ロット 小田 マ イヨット 山田 うらる

'Close' approximation of the Moore bound?

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$. $\mu(2)$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ●

'Close' approximation of the Moore bound?

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ●

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality;

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

・ロット (雪) (日) (日) (日)

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

Thus, for $d \ge 4$ such that d - 1 is a prime power, say, q, we have

 $d^2-d+1\leq \mathit{n}(d,2)\leq d^2-1$, and so $\mu(2)=1$.

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

Thus, for $d \ge 4$ such that d - 1 is a prime power, say, q, we have

 $d^2-d+1\leq \mathit{n}(d,2)\leq d^2-1$, and so $\mu(2)=1$.

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3) = \mu(5) = 1$.

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

Thus, for $d \ge 4$ such that d - 1 is a prime power, say, q, we have

 $d^2-d+1\leq \mathit{n}(d,2)\leq d^2-1$, and so $\mu(2)=1$.

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3) = \mu(5) = 1$. Unknown for other $k \ge 2$.

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

Thus, for $d \ge 4$ such that d - 1 is a prime power, say, q, we have

 $d^2-d+1\leq \mathit{n}(d,2)\leq d^2-1$, and so $\mu(2)=1$.

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3) = \mu(5) = 1$. Unknown for other $k \ge 2$.

Best general bounds: $n(d, k) \ge (\frac{d}{2})^k + (\frac{d}{2})^{k-1}$ [Baskoro-Miller '93],

To date, only six values of n(d, k) in the range $d \ge 3$, $k \ge 2$ are known: n(3,2) = 10, n(4,2) = 15, n(5,2) = 24, n(7,2) = 50, n(3,3) = 20 and n(3,4) = 38. The value of n(6,2) is believed to be 32.

Asymptotics? Deforme '85: $\mu(k) = \lim \sup_{d \to \infty} n(d, k)/d^k$.

 $\mu(2)$? Generalised triangles mod polarity: $B_q = I(PG(2, q))/\pi$; adjacency given by orthogonality; max. degree d = q+1, order d^2-d+1 , diameter 2.

Thus, for $d \ge 4$ such that d - 1 is a prime power, say, q, we have

 $d^2-d+1\leq \mathit{n}(d,2)\leq d^2-1$, and so $\mu(2)=1$.

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3) = \mu(5) = 1$. Unknown for other $k \ge 2$.

Best general bounds: $n(d, k) \ge (\frac{d}{2})^k + (\frac{d}{2})^{k-1}$ [Baskoro-Miller '93], $n(d, k) \ge (\frac{d}{1.6})^k$ for ∞ d's and all sufflarge k [Canale-Gomez '05].

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ …

Approaching the Moore bound by Cayley graphs?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Approaching the Moore bound by Cayley graphs?

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Approaching the Moore bound by Cayley graphs?

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\},\$
C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$.

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$,

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$, $X = \{(x, x^2); x \in F^*\}$,

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$, $X = \{(x, x^2); x \in F^*\}$, and a small set S, with $|S| \sim c\sqrt{q}$.

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$, $X = \{(x, x^2); x \in F^*\}$, and a small set S, with $|S| \sim c\sqrt{q}$. The graph is $Cay(G, X \cup S)$, with $d \sim q - 1 + c\sqrt{q}$.

C(d, k) – largest order of a Cayley graph of degree d and diameter k. The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$, $X = \{(x, x^2); x \in F^*\}$, and a small set S, with $|S| \sim c\sqrt{q}$. The graph is $Cay(G, X \cup S)$, with $d \sim q - 1 + c\sqrt{q}$.

[Bachratý-Š '15] The graph Cay(G, X) is isomorphic to a subgraph of B_q .

C(d, k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree set: $D = \{2^{2m+\delta} + (2+\delta)2^{m+1} - 6; m \ge 1, \delta \in \{0,1\}\}$, so that $D = \{6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...\}$.

[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \ge d^2 - 6\sqrt{2}d^{3/2}$.

Construction: F = GF(q) for $q = 2^{2m+\delta}$ with $m \ge 1$ and $\delta \in \{0, 1\}$. $G = AGL(1, F) = F^+ \rtimes F^*$, $X = \{(x, x^2); x \in F^*\}$, and a small set S, with $|S| \sim c\sqrt{q}$. The graph is $Cay(G, X \cup S)$, with $d \sim q - 1 + c\sqrt{q}$. [Bachratý-Š '15] The graph Cay(G, X) is isomorphic to a subgraph of B_q .

So, the above Cayley graphs arise from generalised triangles with polarity!

イロト 不得 トイヨト イヨト 二日

イロト イポト イヨト イヨト

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● のの⊙

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline:

イロト 不得下 イヨト イヨト 二日

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q).

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q). By [Tits '62], W_q admits a polarity π iff $q = 2^{2m+1}$; complicated to describe.

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q). By [Tits '62], W_q admits a polarity π iff $q = 2^{2m+1}$; complicated to describe.

The Suzuki-Tits ovoid $\Omega = \{u \in P(W_q); u = \pi(u)\}$ is fixed by the Suzuki group ${}^2B_2(q)$; simple group; order $q^2(q^2+1)(q-1)$.

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q). By [Tits '62], W_q admits a polarity π iff $q = 2^{2m+1}$; complicated to describe.

The Suzuki-Tits ovoid $\Omega = \{u \in P(W_q); u = \pi(u)\}$ is fixed by the Suzuki group ${}^2B_2(q)$; simple group; order $q^2(q^2+1)(q-1)$. A point-stabiliser G of order $q^2(q-1)$ turns out to have a regular orbit on the graph $I(W_q \setminus \Omega)/\pi$.

イロト 不得下 イヨト イヨト 二日

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q). By [Tits '62], W_q admits a polarity π iff $q = 2^{2m+1}$; complicated to describe.

The Suzuki-Tits ovoid $\Omega = \{u \in P(W_q); u = \pi(u)\}$ is fixed by the Suzuki group ${}^2B_2(q)$; simple group; order $q^2(q^2+1)(q-1)$. A point-stabiliser *G* of order $q^2(q-1)$ turns out to have a regular orbit on the graph $I(W_q \setminus \Omega)/\pi$. The corresponding induced subgraph A_q has order $q^2(q-1)$, degree q-1 but has diameter > 3.

イロト 不得 トイヨト イヨト 二日

Theorem. [Bachratý-Šiagiová-Š] For every $n \ge 1$ and $q = 2^{2n+1}$ there is a Cayley graph of order $q^2(q-1)$, degree $\le q+4\lceil\sqrt{q}\rceil+3$ and diameter 3.

Outline: Consider the generalised quadrangle W_q as a 'sub-geometry' of PG(3, q) on the same set of points, with just those lines of PG(3, q) that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over GF(q); incidence given by containment as in PG(3, q). By [Tits '62], W_q admits a polarity π iff $q = 2^{2m+1}$; complicated to describe.

The Suzuki-Tits ovoid $\Omega = \{u \in P(W_q); u=\pi(u)\}$ is fixed by the Suzuki group ${}^2B_2(q)$; simple group; order $q^2(q^2+1)(q-1)$. A point-stabiliser *G* of order $q^2(q-1)$ turns out to have a regular orbit on the graph $I(W_q \setminus \Omega)/\pi$. The corresponding induced subgraph A_q has order $q^2(q-1)$, degree q-1 but has diameter > 3. One finally proves that A_q can be extended to a Cayley graph for *G* of diameter 3 and degree $\leq q+4\lceil \sqrt{q}\rceil+3$. \Box

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

For every $x, y \in F = GF(q)$, $q = 2^{2m+1}$, let $f(x, y) = x^{\omega+2} + xy + y^{\omega}$ for $\omega = 2^{m+1}$, so that $x^{\omega^2} = x^2$.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

For every $x, y \in F = GF(q)$, $q = 2^{2m+1}$, let $f(x, y) = x^{\omega+2} + xy + y^{\omega}$ for $\omega = 2^{m+1}$, so that $x^{\omega^2} = x^2$. The set of matrices M(r; a, b) given by

$$M(r; a, b) = \begin{pmatrix} 1 & f(a, b) & a & b \\ 0 & r^{\omega+2} & 0 & 0 \\ 0 & (a^{\omega+1}+b)r & r & a^{\omega}r \\ 0 & ar^{\omega+1} & 0 & r^{\omega+1} \end{pmatrix}$$

is closed under multiplication and forms a group G of order $q^2(q-1)$, acting on $I(W_q)/\pi$ as a group of collineation by right multiplication.

A DACE A E A E A CA

For every $x, y \in F = GF(q)$, $q = 2^{2m+1}$, let $f(x, y) = x^{\omega+2} + xy + y^{\omega}$ for $\omega = 2^{m+1}$, so that $x^{\omega^2} = x^2$. The set of matrices M(r; a, b) given by

$$M(r; a, b) = \begin{pmatrix} 1 & f(a, b) & a & b \\ 0 & r^{\omega+2} & 0 & 0 \\ 0 & (a^{\omega+1}+b)r & r & a^{\omega}r \\ 0 & ar^{\omega+1} & 0 & r^{\omega+1} \end{pmatrix}$$

is closed under multiplication and forms a group G of order $q^2(q-1)$, acting on $I(W_q)/\pi$ as a group of collineation by right multiplication. The group of all collineations of PG(3,q) leaving the 'self-polar' set $\Omega = \{[0,1,0,0]\} \cup \{[1, f(x,y), x, y]; x, y \in F\}$

invariant is the Suzuki group $Sz(q) = {}^{2}B_{2}(q)$, and G is the subgroup of Sz(q) that stabilises the point [0, 1, 0, 0].

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$.

イロン 不良 とうせい かけいしゅ

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$.

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Cayley record holders for larger diameters:

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Cayley record holders for larger diameters:

[Macbeth-Šiagiová-Š-Vetrík '09] For each $d \ge 7$ and $k \ge 4$ we have $C(d, k) \ge k((d-3)/3)^k$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Cayley record holders for larger diameters:

[Macbeth-Šiagiová-Š-Vetrík '09] For each $d \ge 7$ and $k \ge 4$ we have $C(d,k) \ge k((d-3)/3)^k$.

Compare with [Canale-Gomez '05]: $n(d, k) \ge (\frac{d}{1.6})^k$

イロト 不得下 イヨト イヨト 二日

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Cayley record holders for larger diameters:

- [Macbeth-Šiagiová-Š-Vetrík '09] For each $d \ge 7$ and $k \ge 4$ we have $C(d,k) \ge k((d-3)/3)^k$.
- Compare with [Canale-Gomez '05]: $n(d, k) \ge (\frac{d}{1.6})^k$... and with
- the Moore bound $n(d, k) \leq M(d, k) \sim d^k$ for $d \to \infty$...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order $q^5 - o(q^5)$ from a suitable regular group on a subgraph obtained from a generalised hexagon H(q) factored by a polarity; these exist iff $q = 3^{2n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${}^2G_2(q)$; simple group; order $q^3(q^3 + 1)(q - 1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${}^2G_2(q)$ has no subgroup of order $O(q^5)$, $q \rightarrow \infty$.

Cayley record holders for larger diameters:

- [Macbeth-Šiagiová-Š-Vetrík '09] For each $d \ge 7$ and $k \ge 4$ we have $C(d, k) \ge k((d-3)/3)^k$.
- Compare with [Canale-Gomez '05]: $n(d, k) \ge \left(\frac{d}{1.6}\right)^k$... and with
- the Moore bound $n(d,k) \leq M(d,k) \sim d^k$ for $d \to \infty$... Hmmm ...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Introduction

How about vertex-transitive graphs?

<ロ> (日) (日) (日) (日) (日)

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

イロト 不得下 イヨト イヨト

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on VT(d, k) and C(d, k) was the Moore bound M(d, k).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on VT(d, k) and C(d, k) was the Moore bound M(d, k).

[Jajcay-Mačaj-Š, submitted] For any fixed $d \ge 3$ and $c \ge 2$ we have $VT(d, k) \le M(d, k) - c$ for almost all diameters k.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on VT(d, k) and C(d, k) was the Moore bound M(d, k).

[Jajcay-Mačaj-Š, submitted] For any fixed $d \ge 3$ and $c \ge 2$ we have $VT(d, k) \le M(d, k) - c$ for almost all diameters k.

Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●
How about vertex-transitive graphs?

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on VT(d, k) and C(d, k) was the Moore bound M(d, k).

[Jajcay-Mačaj-Š, submitted] For any fixed $d \ge 3$ and $c \ge 2$ we have $VT(d, k) \le M(d, k) - c$ for almost all diameters k.

Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power. A simple example [Jajcay-Š '94]:

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

How about vertex-transitive graphs?

VT(d, k) – largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on VT(d, k) and C(d, k) was the Moore bound M(d, k).

[Jajcay-Mačaj-Š, submitted] For any fixed $d \ge 3$ and $c \ge 2$ we have $VT(d, k) \le M(d, k) - c$ for almost all diameters k.

Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power. A simple example [Jajcay-Š '94]:

If a graph Γ is isomorphic to a Cayley graph C(G, X), then, for any prime p, the number of oriented closed walks of length p in Γ , based at a fixed vertex, is congruent mod p to the number of generators of order p in X.

(日) (四) (王) (王) (王)

Digraphs $\Gamma_{\delta,k}$: vertices are *k*-strings of distinct symbols from a set *L*, $|L| = \delta + 1$; $3 \le k \le \delta$. Any vertex $v = x_1 x_2 \dots x_k$ sends a dart into each $v_y = x_2 \dots x_k y$ where $y \in L \setminus \{x_1, \dots, x_k\}$ and also, for $1 \le i \le k - 1$, into each v_i obtained from v by moving x_i to the right end of the string.

直下 イヨト イヨト

Digraphs $\Gamma_{\delta,k}$: vertices are *k*-strings of distinct symbols from a set *L*, $|L| = \delta + 1$; $3 \le k \le \delta$. Any vertex $v = x_1 x_2 \dots x_k$ sends a dart into each $v_y = x_2 \dots x_k y$ where $y \in L \setminus \{x_1, \dots, x_k\}$ and also, for $1 \le i \le k - 1$, into each v_i obtained from v by moving x_i to the right end of the string.

Suppressing directions in $\Gamma_{\delta,k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs F(d, k) of degree $d = 2\delta - 1$ and diameter k; these are the *undirected Faber-Moore-Chen graphs* of order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!, where $3 \le k \le (d+1)/2$.

Digraphs $\Gamma_{\delta,k}$: vertices are *k*-strings of distinct symbols from a set *L*, $|L| = \delta + 1$; $3 \le k \le \delta$. Any vertex $v = x_1 x_2 \dots x_k$ sends a dart into each $v_y = x_2 \dots x_k y$ where $y \in L \setminus \{x_1, \dots, x_k\}$ and also, for $1 \le i \le k - 1$, into each v_i obtained from v by moving x_i to the right end of the string.

Suppressing directions in $\Gamma_{\delta,k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs F(d, k) of degree $d = 2\delta - 1$ and diameter k; these are the *undirected Faber-Moore-Chen graphs* of order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!, where $3 \le k \le (d+1)/2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $VT(d,k) \ge o(d,k) \sim (d/2)^k$.

・ロット (雪) (日) (日) (日)

Digraphs $\Gamma_{\delta,k}$: vertices are *k*-strings of distinct symbols from a set *L*, $|L| = \delta + 1$; $3 \le k \le \delta$. Any vertex $v = x_1 x_2 \dots x_k$ sends a dart into each $v_y = x_2 \dots x_k y$ where $y \in L \setminus \{x_1, \dots, x_k\}$ and also, for $1 \le i \le k - 1$, into each v_i obtained from v by moving x_i to the right end of the string.

Suppressing directions in $\Gamma_{\delta,k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs F(d, k) of degree $d = 2\delta - 1$ and diameter k; these are the *undirected Faber-Moore-Chen graphs* of order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!, where $3 \le k \le (d+1)/2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $VT(d,k) \ge o(d,k) \sim (d/2)^k$.

The [M-Š-Š-V '09] bound for Cayley graphs: $C(d,k) \ge k((d-3)/3)^k$.

Digraphs $\Gamma_{\delta,k}$: vertices are *k*-strings of distinct symbols from a set *L*, $|L| = \delta + 1$; $3 \le k \le \delta$. Any vertex $v = x_1 x_2 \dots x_k$ sends a dart into each $v_y = x_2 \dots x_k y$ where $y \in L \setminus \{x_1, \dots, x_k\}$ and also, for $1 \le i \le k - 1$, into each v_i obtained from v by moving x_i to the right end of the string.

Suppressing directions in $\Gamma_{\delta,k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs F(d, k) of degree $d = 2\delta - 1$ and diameter k; these are the *undirected Faber-Moore-Chen graphs* of order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!, where $3 \le k \le (d+1)/2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $VT(d,k) \ge o(d,k) \sim (d/2)^k$.

The [M-Š-Š-V '09] bound for Cayley graphs: $C(d, k) \ge k((d-3)/3)^k$.

F-M-Ch are Cayley graphs only in rare cases. [Staneková-Ždímalová '10]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$
$$\left(\frac{d+3}{2} - \frac{1}{k-1}\right)^k < VT(d,k) < d^k - c$$

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$

$$\left(\frac{d+3}{2} - \frac{1}{k-1}\right)^k < VT(d,k) < d^k - c$$

$$k\left(\frac{d}{3}\right)^k < C(d,k) < d^k - c$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$
$$\left(\frac{d+3}{2} - \frac{1}{k-1}\right)^k < VT(d,k) < d^k - c$$
$$k\left(\frac{d}{3}\right)^k < C(d,k) < d^k - c$$

Related: Construction of smallest graphs of given degree and girth.

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$
$$\left(\frac{d+3}{2} - \frac{1}{k-1}\right)^k < VT(d,k) < d^k - c$$
$$k\left(\frac{d}{3}\right)^k < C(d,k) < d^k - c$$

Related: Construction of smallest graphs of given degree and girth.

Further connections between the degree-diameter problem and the degree-girth problem with finite geometries are definitely worth studying.

Under some conditions on $d \to \infty$ and fixed $k \ge 3$:

$$\left(\frac{d}{1.6}\right)^k < n(d,k) < d^k$$
$$\left(\frac{d+3}{2} - \frac{1}{k-1}\right)^k < VT(d,k) < d^k - c$$
$$k\left(\frac{d}{3}\right)^k < C(d,k) < d^k - c$$

Related: Construction of smallest graphs of given degree and girth.

Further connections between the degree-diameter problem and the degree-girth problem with finite geometries are definitely worth studying.

Symmetrically yours, JŠ