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Introduction

The degree-diameter problem

The problem: Find the largest order n(d , k) of a graph of maximum
degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton ’60]:

n(d , k) ≤ M(d , k) = 1+d+d(d − 1)+ . . .+d(d − 1)k−1 ∼ dk for fixed k

Two mainstreams of research: Non-existence proofs and constructions.

[HS ’60, Bannai-Ito ’73, Damerell ’73]: For d ≥ 3, k ≥ 2 we have
n(d , k) = M(d , k) only if k = 2 and d ∈ {3, 7, 57}. (Moore graphs.)

A sample of intriguing questions:

• Is it true that for each c > 0 there are d , k with n(d , k) ≤ M(d , k)− c ?

• Is it true that n(d , k) > (1− ε)M(d , k) for all d > dε, k > kε ?
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Introduction

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

The missing Moore graph(s) Γ of degree 57 and order 3250:

[Higman, 60’s]: Γ cannot be vertex-transitive!
[Makhnev-Paduchikh ’01]: Some restrictions on o = |Aut(Γ)|.

[Mačaj-Š ’09]: Severe restrictions on o and the orbit structure of Aut(Γ):

if o ≥ 3 is odd, then either o is a prime ≤ 13 or o is in the set
{15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375};
if o is even, then o ∈ {2, 6, 10, 14, 18, 22, 38, 50, 54, 110}.

Method: Characters of rational representations of groups and theory of
equitable partitions induced by group actions.

Consequence: Bad news for attempts to construct Γ by coverings!
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Introduction

‘Close’ approximation of the Moore bound?

To date, only six values of n(d , k) in the range d ≥ 3, k ≥ 2 are known:
n(3, 2) = 10, n(4, 2) = 15, n(5, 2) = 24, n(7, 2) = 50, n(3, 3) = 20 and
n(3, 4) = 38. The value of n(6, 2) is believed to be 32.

Asymptotics? Delorme ’85: µ(k) = lim sup d→∞ n(d , k)/dk .

µ(2) ? Generalised triangles mod polarity: Bq = I(PG(2, q))/π; adjacency
given by orthogonality; max. degree d = q+1, order d2−d+1, diameter 2.

Thus, for d ≥ 4 such that d − 1 is a prime power, say, q, we have

d2 − d + 1 ≤ n(d , 2) ≤ d2 − 1 , and so µ(2) = 1 .

Generalised quadrangles and hexagons with polarity [Delorme ’85]:
µ(3) = µ(5) = 1. Unknown for other k ≥ 2.

Best general bounds: n(d , k) ≥ (d2 )k + (d2 )k−1 [Baskoro-Miller ’93],

n(d , k) ≥ ( d
1.6 )k for ∞ d ’s and all sufflarge k [Canale-Gomez ’05].
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n(3, 2) = 10, n(4, 2) = 15, n(5, 2) = 24, n(7, 2) = 50, n(3, 3) = 20 and
n(3, 4) = 38. The value of n(6, 2) is believed to be 32.

Asymptotics? Delorme ’85: µ(k) = lim sup d→∞ n(d , k)/dk .

µ(2) ? Generalised triangles mod polarity:

Bq = I(PG(2, q))/π; adjacency
given by orthogonality; max. degree d = q+1, order d2−d+1, diameter 2.

Thus, for d ≥ 4 such that d − 1 is a prime power, say, q, we have

d2 − d + 1 ≤ n(d , 2) ≤ d2 − 1 , and so µ(2) = 1 .

Generalised quadrangles and hexagons with polarity [Delorme ’85]:
µ(3) = µ(5) = 1. Unknown for other k ≥ 2.

Best general bounds: n(d , k) ≥ (d2 )k + (d2 )k−1 [Baskoro-Miller ’93],

n(d , k) ≥ ( d
1.6 )k for ∞ d ’s and all sufflarge k [Canale-Gomez ’05].
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 4 / 11



Introduction

‘Close’ approximation of the Moore bound?

To date, only six values of n(d , k) in the range d ≥ 3, k ≥ 2 are known:
n(3, 2) = 10, n(4, 2) = 15, n(5, 2) = 24, n(7, 2) = 50, n(3, 3) = 20 and
n(3, 4) = 38. The value of n(6, 2) is believed to be 32.

Asymptotics? Delorme ’85: µ(k) = lim sup d→∞ n(d , k)/dk .

µ(2) ? Generalised triangles mod polarity: Bq = I(PG(2, q))/π; adjacency
given by orthogonality; max. degree d = q+1, order d2−d+1, diameter 2.

Thus, for d ≥ 4 such that d − 1 is a prime power, say, q, we have

d2 − d + 1 ≤ n(d , 2) ≤ d2 − 1 , and so µ(2) = 1 .

Generalised quadrangles and hexagons with polarity [Delorme ’85]:
µ(3) = µ(5) = 1. Unknown for other k ≥ 2.

Best general bounds: n(d , k) ≥ (d2 )k + (d2 )k−1 [Baskoro-Miller ’93],

n(d , k) ≥ ( d
1.6 )k for ∞ d ’s and all sufflarge k [Canale-Gomez ’05].
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Introduction

Approaching the Moore bound by Cayley graphs?

C (d , k) – largest order of a Cayley graph of degree d and diameter k.

The best currently available result for diameter two and a special degree
set: D = {22m+δ + (2 + δ)2m+1 − 6; m ≥ 1, δ ∈ {0, 1}}, so that
D = {6, 14, 26, 50, 90, 170, 314, 602, 1146, 2234, 4346, 8570, ...}.

[Šiagiová-Š ’12] For any d ∈ D we have C (d , 2) ≥ d2 − 6
√

2d3/2.

Construction: F = GF (q) for q = 22m+δ with m ≥ 1 and δ ∈ {0, 1}.
G = AGL(1,F ) = F+ o F ∗, X = {(x , x2); x ∈ F ∗}, and a small set S ,
with |S | ∼ c

√
q. The graph is Cay(G ,X ∪ S), with d ∼ q − 1 + c

√
q.

[Bachratý-Š ’15] The graph Cay(G ,X ) is isomorphic to a subgraph of Bq.

So, the above Cayley graphs arise from generalised triangles with polarity!
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[Šiagiová-Š ’12] For any d ∈ D we have C (d , 2) ≥ d2 − 6
√

2d3/2.

Construction: F = GF (q) for q = 22m+δ with m ≥ 1 and δ ∈ {0, 1}.
G = AGL(1,F ) = F+ o F ∗, X = {(x , x2); x ∈ F ∗}, and a small set S ,
with |S | ∼ c

√
q. The graph is Cay(G ,X ∪ S), with d ∼ q − 1 + c

√
q.
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 5 / 11



Introduction

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every n ≥ 1 and q = 22n+1 there is
a Cayley graph of order q2(q−1), degree ≤ q+4d√qe+3 and diameter 3.

Outline: Consider the generalised quadrangle Wq as a ‘sub-geometry’ of
PG(3, q) on the same set of points, with just those lines of PG(3, q) that
are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4
over GF (q); incidence given by containment as in PG (3, q). By [Tits ’62],
Wq admits a polarity π iff q = 22m+1; complicated to describe.

The Suzuki-Tits ovoid Ω = {u∈P(Wq); u=π(u)} is fixed by the Suzuki
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 6 / 11



Introduction

Moore bound approached by Cayley graphs of diameter 3
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 6 / 11



Introduction

Moore bound approached by Cayley graphs of diameter 3
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Introduction

Algebraic tools in generalised quadrangles

For every x , y ∈ F = GF (q), q = 22m+1, let f (x , y) = xω+2 + xy + yω

for ω = 2m+1, so that xω
2

= x2. The set of matrices M(r ; a, b) given by

M(r ; a, b) =


1 f (a, b) a b
0 rω+2 0 0
0 (aω+1+b)r r aωr
0 arω+1 0 rω+1


is closed under multiplication and forms a group G of order q2(q − 1),
acting on I(Wq)/π as a group of collineation by right multiplication.

The group of all collineations of PG(3, q) leaving the ‘self-polar’ set

Ω = {[0, 1, 0, 0]} ∪ {[1, f (x , y), x , y ]; x , y ∈ F}
invariant is the Suzuki group Sz(q) = 2B2(q), and G is the subgroup of
Sz(q) that stabilises the point [0, 1, 0, 0].
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 7 / 11



Introduction

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of
diameter 5, degree q + o(q) and order q5 − o(q5) from a suitable regular
group on a subgraph obtained from a generalised hexagon H(q) factored
by a polarity; these exist iff q = 32n+1. The corresponding Ree-Tits ovoid
is fixed by the Ree group 2G2(q); simple group; order q3(q3 + 1)(q − 1).
Unfortunately, by the classification of maximal subgroups of Ree groups
[Levchuk and Nuzhin ’85], 2G2(q) has no subgroup of order O(q5), q→∞.

Cayley record holders for larger diameters:

[Macbeth-Šiagiová-Š-Vetŕık ’09] For each d ≥ 7 and k ≥ 4 we have
C (d , k) ≥ k((d − 3)/3)k .

Compare with [Canale-Gomez ’05]: n(d , k) ≥ ( d
1.6 )k ... and with

the Moore bound n(d , k) ≤ M(d , k) ∼ dk for d →∞ ... Hmmm ...
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Introduction

How about vertex-transitive graphs?

VT (d , k) – largest order of a vertex-transitive graph of degree d and
diameter k.

Until recently, the only known general upper bound on VT (d , k) and
C (d , k) was the Moore bound M(d , k).

[Jajcay-Mačaj-Š, submitted] For any fixed d ≥ 3 and c ≥ 2 we have
VT (d , k) ≤ M(d , k)− c for almost all diameters k .
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 9 / 11



Introduction

How about vertex-transitive graphs?

VT (d , k) – largest order of a vertex-transitive graph of degree d and
diameter k.

Until recently, the only known general upper bound on VT (d , k) and
C (d , k) was the Moore bound M(d , k).
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Introduction

Vertex-transitive record holders

Digraphs Γδ,k : vertices are k-strings of distinct symbols from a set L,
|L| = δ + 1; 3 ≤ k ≤ δ. Any vertex v = x1x2 . . . xk sends a dart into each
vy = x2 . . . xky where y ∈ L \ {x1, . . . , xk} and also, for 1 ≤ i ≤ k − 1, into
each vi obtained from v by moving xi to the right end of the string.

Suppressing directions in Γδ,k and replacing digons by simple edges yields
the (vertex-transitive) undirected graphs F (d , k) of degree d = 2δ − 1 and
diameter k; these are the undirected Faber-Moore-Chen graphs of order
o(d , k) = ((d + 3)/2)!/((d + 3)/2− k)!, where 3 ≤ k ≤ (d + 1)/2.

For fixed k and d→∞ [F-M-Ch ’93]: VT (d , k) ≥ o(d , k) ∼ (d/2)k .

The [M-Š-Š-V ’09] bound for Cayley graphs: C (d , k) ≥ k((d − 3)/3)k .

F-M-Ch are Cayley graphs only in rare cases. [Staneková-Žd́ımalová ’10]
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Jozef Širáň Open University and Slovak University of Technology Geometry and Symmetry, VeszprémThe degree-diameter problem for vertex-transitive graphs and finite geometries30th June 2015 10 / 11



Introduction

Vertex-transitive record holders

Digraphs Γδ,k : vertices are k-strings of distinct symbols from a set L,
|L| = δ + 1; 3 ≤ k ≤ δ. Any vertex v = x1x2 . . . xk sends a dart into each
vy = x2 . . . xky where y ∈ L \ {x1, . . . , xk} and also, for 1 ≤ i ≤ k − 1, into
each vi obtained from v by moving xi to the right end of the string.

Suppressing directions in Γδ,k and replacing digons by simple edges yields
the (vertex-transitive) undirected graphs F (d , k) of degree d = 2δ − 1 and
diameter k; these are the undirected Faber-Moore-Chen graphs of order
o(d , k) = ((d + 3)/2)!/((d + 3)/2− k)!, where 3 ≤ k ≤ (d + 1)/2.

For fixed k and d→∞ [F-M-Ch ’93]: VT (d , k) ≥ o(d , k) ∼ (d/2)k .

The [M-Š-Š-V ’09] bound for Cayley graphs: C (d , k) ≥ k((d − 3)/3)k .

F-M-Ch are Cayley graphs only in rare cases. [Staneková-Žd́ımalová ’10]
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Introduction

A summary of ‘asymptotic’ bounds

Under some conditions on d →∞ and fixed k ≥ 3:(
d

1.6

)k

< n(d , k) < dk

(
d + 3

2
− 1

k − 1

)k

< VT (d , k) < dk − c

k

(
d

3

)k

< C (d , k) < dk − c

Related: Construction of smallest graphs of given degree and girth.

Further connections between the degree-diameter problem and the
degree-girth problem with finite geometries are definitely worth studying.

Symmetrically yours, JŠ
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