The degree-diameter problem for vertex-transitive graphs and finite geometries

Jozef Širáň

Open University and Slovak University of Technology

Geometry and Symmetry, Veszprém

30th June 2015

The degree-diameter problem

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1}$

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k
Two mainstreams of research: Non-existence proofs and constructions.

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k
Two mainstreams of research: Non-existence proofs and constructions.
[HS '60, Bannai-Ito '73, Damerell '73]: For $d \geq 3, k \geq 2$ we have $n(d, k)=M(d, k)$ only if $k=2$ and $d \in\{3,7,57\}$. (Moore graphs.)

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k
Two mainstreams of research: Non-existence proofs and constructions.
[HS '60, Bannai-Ito '73, Damerell '73]: For $d \geq 3, k \geq 2$ we have $n(d, k)=M(d, k)$ only if $k=2$ and $d \in\{3,7,57\}$. (Moore graphs.)

A sample of intriguing questions:

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k
Two mainstreams of research: Non-existence proofs and constructions.
[HS '60, Bannai-Ito '73, Damerell '73]: For $d \geq 3, k \geq 2$ we have $n(d, k)=M(d, k)$ only if $k=2$ and $d \in\{3,7,57\}$. (Moore graphs.)

A sample of intriguing questions:

- Is it true that for each $c>0$ there are d, k with $n(d, k) \leq M(d, k)-c$?

The degree-diameter problem

The problem: Find the largest order $n(d, k)$ of a graph of maximum degree d and diameter k and characterize the extremal graphs.

The Moore bound [Hoffman-Singleton '60]:
$n(d, k) \leq M(d, k)=1+d+d(d-1)+\ldots+d(d-1)^{k-1} \sim d^{k}$ for fixed k
Two mainstreams of research: Non-existence proofs and constructions.
[HS '60, Bannai-Ito '73, Damerell '73]: For $d \geq 3, k \geq 2$ we have $n(d, k)=M(d, k)$ only if $k=2$ and $d \in\{3,7,57\}$. (Moore graphs.)

A sample of intriguing questions:

- Is it true that for each $c>0$ there are d, k with $n(d, k) \leq M(d, k)-c$?
- Is it true that $n(d, k)>(1-\varepsilon) M(d, k)$ for all $d>d_{\varepsilon}, k>k_{\varepsilon}$?

Moore graphs: Symmetry considerations

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs. The missing Moore graph(s) 「 of degree 57 and order 3250:

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs. The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.
The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!
[Makhnev-Paduchikh '01]: Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$.

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.
The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!
[Makhnev-Paduchikh '01]: Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$.
[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $\operatorname{Aut}(\Gamma)$:

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.
The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!
[Makhnev-Paduchikh '01]: Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$.
[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $\operatorname{Aut}(\Gamma)$:

- if $o \geq 3$ is odd, then either o is a prime ≤ 13 or o is in the set $\{15,19,21,25,27,35,39,45,55,57,75,125,135,147,171,275,375\}$;

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.
The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!
[Makhnev-Paduchikh '01]: Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$.
[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $\operatorname{Aut}(\Gamma)$:

- if $o \geq 3$ is odd, then either o is a prime ≤ 13 or o is in the set $\{15,19,21,25,27,35,39,45,55,57,75,125,135,147,171,275,375\}$;
- if o is even, then $o \in\{2,6,10,14,18,22,38,50,54,110\}$.

Moore graphs: Symmetry considerations

Petersen and Hoffman-Singleton: Vertex-transitive but not Cayley graphs.
The missing Moore graph(s) 「 of degree 57 and order 3250:
[Higman, 60's]: 「 cannot be vertex-transitive!
[Makhnev-Paduchikh '01]: Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$.
[Mačaj-Š '09]: Severe restrictions on o and the orbit structure of $\operatorname{Aut}(\Gamma)$:

- if $o \geq 3$ is odd, then either o is a prime ≤ 13 or o is in the set $\{15,19,21,25,27,35,39,45,55,57,75,125,135,147,171,275,375\}$;
- if o is even, then $o \in\{2,6,10,14,18,22,38,50,54,110\}$.

Method: Characters of rational representations of groups and theory of equitable partitions induced by group actions.

Moore graphs：Symmetry considerations

Petersen and Hoffman－Singleton：Vertex－transitive but not Cayley graphs．
The missing Moore graph（s）「 of degree 57 and order 3250：
［Higman，60＇s］：「 cannot be vertex－transitive！
［Makhnev－Paduchikh＇01］：Some restrictions on $o=|\operatorname{Aut}(\Gamma)|$ ．
［Mačaj－Š＇09］：Severe restrictions on o and the orbit structure of $\operatorname{Aut}(\Gamma)$ ：
－if $o \geq 3$ is odd，then either o is a prime ≤ 13 or o is in the set $\{15,19,21,25,27,35,39,45,55,57,75,125,135,147,171,275,375\}$ ；
－if o is even，then $o \in\{2,6,10,14,18,22,38,50,54,110\}$ ．
Method：Characters of rational representations of groups and theory of equitable partitions induced by group actions．

Consequence：Bad news for attempts to construct 「 by coverings！

‘Close' approximation of the Moore bound?

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .

Asymptotics?

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 . Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$?

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 . Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity:

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} n(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality;

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} n(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

Thus, for $d \geq 4$ such that $d-1$ is a prime power, say, q, we have

$$
d^{2}-d+1 \leq n(d, 2) \leq d^{2}-1, \text { and so } \mu(2)=1
$$

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

Thus, for $d \geq 4$ such that $d-1$ is a prime power, say, q, we have

$$
d^{2}-d+1 \leq n(d, 2) \leq d^{2}-1, \text { and so } \mu(2)=1
$$

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3)=\mu(5)=1$.

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

Thus, for $d \geq 4$ such that $d-1$ is a prime power, say, q, we have

$$
d^{2}-d+1 \leq n(d, 2) \leq d^{2}-1, \text { and so } \mu(2)=1
$$

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3)=\mu(5)=1$. Unknown for other $k \geq 2$.

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} \boldsymbol{n}(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

Thus, for $d \geq 4$ such that $d-1$ is a prime power, say, q, we have

$$
d^{2}-d+1 \leq n(d, 2) \leq d^{2}-1, \text { and so } \mu(2)=1
$$

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3)=\mu(5)=1$. Unknown for other $k \geq 2$.
Best general bounds: $n(d, k) \geq\left(\frac{d}{2}\right)^{k}+\left(\frac{d}{2}\right)^{k-1}$ [Baskoro-Miller '93],

'Close' approximation of the Moore bound?

To date, only six values of $n(d, k)$ in the range $d \geq 3, k \geq 2$ are known: $n(3,2)=10, n(4,2)=15, n(5,2)=24, n(7,2)=50, n(3,3)=20$ and $n(3,4)=38$. The value of $n(6,2)$ is believed to be 32 .
Asymptotics? Delorme '85: $\mu(k)=\lim _{\sup }^{d \rightarrow \infty} n(d, k) / d^{k}$.
$\mu(2)$? Generalised triangles mod polarity: $B_{q}=\mathrm{I}(\mathrm{PG}(2, q)) / \pi$; adjacency given by orthogonality; max. degree $d=q+1$, order $d^{2}-d+1$, diameter 2 .

Thus, for $d \geq 4$ such that $d-1$ is a prime power, say, q, we have

$$
d^{2}-d+1 \leq n(d, 2) \leq d^{2}-1, \text { and so } \mu(2)=1
$$

Generalised quadrangles and hexagons with polarity [Delorme '85]: $\mu(3)=\mu(5)=1$. Unknown for other $k \geq 2$.
Best general bounds: $n(d, k) \geq\left(\frac{d}{2}\right)^{k}+\left(\frac{d}{2}\right)^{k-1}$ [Baskoro-Miller '93], $n(d, k) \geq\left(\frac{d}{1.6}\right)^{k}$ for ∞d 's and all sufflarge k [Canale-Gomez '05].

Approaching the Moore bound by Cayley graphs?

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$,

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}$,

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}, X=\left\{\left(x, x^{2}\right) ; x \in F^{*}\right\}$,

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}, X=\left\{\left(x, x^{2}\right) ; x \in F^{*}\right\}$, and a small set S, with $|S| \sim c \sqrt{q}$.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}, X=\left\{\left(x, x^{2}\right) ; x \in F^{*}\right\}$, and a small set S, with $|S| \sim c \sqrt{q}$. The graph is $\operatorname{Cay}(G, X \cup S)$, with $d \sim q-1+c \sqrt{q}$.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$.
[Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.
Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}, X=\left\{\left(x, x^{2}\right) ; x \in F^{*}\right\}$, and a small set S, with $|S| \sim c \sqrt{q}$. The graph is $\operatorname{Cay}(G, X \cup S)$, with $d \sim q-1+c \sqrt{q}$.
[Bachratý-Š '15] The graph Cay (G, X) is isomorphic to a subgraph of B_{q}.

Approaching the Moore bound by Cayley graphs?

$C(d, k)$ - largest order of a Cayley graph of degree d and diameter k.
The best currently available result for diameter two and a special degree set: $D=\left\{2^{2 m+\delta}+(2+\delta) 2^{m+1}-6 ; m \geq 1, \delta \in\{0,1\}\right\}$, so that $D=\{6,14,26,50,90,170,314,602,1146,2234,4346,8570, \ldots\}$. [Šiagiová-Š '12] For any $d \in D$ we have $C(d, 2) \geq d^{2}-6 \sqrt{2} d^{3 / 2}$.

Construction: $F=G F(q)$ for $q=2^{2 m+\delta}$ with $m \geq 1$ and $\delta \in\{0,1\}$. $G=\operatorname{AGL}(1, F)=F^{+} \rtimes F^{*}, X=\left\{\left(x, x^{2}\right) ; x \in F^{*}\right\}$, and a small set S, with $|S| \sim c \sqrt{q}$. The graph is $\operatorname{Cay}(G, X \cup S)$, with $d \sim q-1+c \sqrt{q}$. [Bachratý-Š '15] The graph Cay (G, X) is isomorphic to a subgraph of B_{q}. So, the above Cayley graphs arise from generalised triangles with polarity!

Moore bound approached by Cayley graphs of diameter 3

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 . Outline:

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$.

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$. By [Tits '62], W_{q} admits a polarity π iff $q=2^{2 m+1}$; complicated to describe.

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$. By [Tits '62], W_{q} admits a polarity π iff $q=2^{2 m+1}$; complicated to describe.
The Suzuki-Tits ovoid $\Omega=\left\{u \in P\left(W_{q}\right) ; u=\pi(u)\right\}$ is fixed by the Suzuki group ${ }^{2} B_{2}(q)$; simple group; order $q^{2}\left(q^{2}+1\right)(q-1)$.

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$. By [Tits '62], W_{q} admits a polarity π iff $q=2^{2 m+1}$; complicated to describe.
The Suzuki-Tits ovoid $\Omega=\left\{u \in P\left(W_{q}\right) ; u=\pi(u)\right\}$ is fixed by the Suzuki group ${ }^{2} B_{2}(q)$; simple group; order $q^{2}\left(q^{2}+1\right)(q-1)$. A point-stabiliser G of order $q^{2}(q-1)$ turns out to have a regular orbit on the graph $\mathrm{I}\left(W_{q} \backslash \Omega\right) / \pi$.

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$. By [Tits '62], W_{q} admits a polarity π iff $q=2^{2 m+1}$; complicated to describe.
The Suzuki-Tits ovoid $\Omega=\left\{u \in P\left(W_{q}\right) ; u=\pi(u)\right\}$ is fixed by the Suzuki group ${ }^{2} B_{2}(q)$; simple group; order $q^{2}\left(q^{2}+1\right)(q-1)$. A point-stabiliser G of order $q^{2}(q-1)$ turns out to have a regular orbit on the graph $\mathrm{I}\left(W_{q} \backslash \Omega\right) / \pi$. The corresponding induced subgraph A_{q} has order $q^{2}(q-1)$, degree $q-1$ but has diameter >3.

Moore bound approached by Cayley graphs of diameter 3

Theorem. [Bachratý-Šiagiová-Š] For every $n \geq 1$ and $q=2^{2 n+1}$ there is a Cayley graph of order $q^{2}(q-1)$, degree $\leq q+4\lceil\sqrt{q}\rceil+3$ and diameter 3 .

Outline: Consider the generalised quadrangle W_{q} as a 'sub-geometry' of $\operatorname{PG}(3, q)$ on the same set of points, with just those lines of $\operatorname{PG}(3, q)$ that are totally isotropic w.r.t. a skew-symmetric bilinear form of dimension 4 over $G F(q)$; incidence given by containment as in $P G(3, q)$. By [Tits '62], W_{q} admits a polarity π iff $q=2^{2 m+1}$; complicated to describe.
The Suzuki-Tits ovoid $\Omega=\left\{u \in P\left(W_{q}\right) ; u=\pi(u)\right\}$ is fixed by the Suzuki group ${ }^{2} B_{2}(q)$; simple group; order $q^{2}\left(q^{2}+1\right)(q-1)$. A point-stabiliser G of order $q^{2}(q-1)$ turns out to have a regular orbit on the graph $\mathrm{I}\left(W_{q} \backslash \Omega\right) / \pi$. The corresponding induced subgraph A_{q} has order $q^{2}(q-1)$, degree $q-1$ but has diameter >3. One finally proves that A_{q} can be extended to a Cayley graph for G of diameter 3 and degree $\leq q+4\lceil\sqrt{q}\rceil+3$.

Algebraic tools in generalised quadrangles

Algebraic tools in generalised quadrangles

For every $x, y \in F=G F(q), q=2^{2 m+1}$, let $f(x, y)=x^{\omega+2}+x y+y^{\omega}$ for $\omega=2^{m+1}$, so that $x^{\omega^{2}}=x^{2}$.

Algebraic tools in generalised quadrangles

For every $x, y \in F=G F(q), q=2^{2 m+1}$, let $f(x, y)=x^{\omega+2}+x y+y^{\omega}$ for $\omega=2^{m+1}$, so that $x^{\omega^{2}}=x^{2}$. The set of matrices $M(r ; a, b)$ given by

$$
M(r ; a, b)=\left(\begin{array}{cccc}
1 & f(a, b) & a & b \\
0 & r^{\omega+2} & 0 & 0 \\
0 & \left(a^{\omega+1}+b\right) r & r & a^{\omega} r \\
0 & a r^{\omega+1} & 0 & r^{\omega+1}
\end{array}\right)
$$

is closed under multiplication and forms a group G of order $q^{2}(q-1)$, acting on $\mathrm{I}\left(W_{q}\right) / \pi$ as a group of collineation by right multiplication.

Algebraic tools in generalised quadrangles

For every $x, y \in F=G F(q), q=2^{2 m+1}$, let $f(x, y)=x^{\omega+2}+x y+y^{\omega}$ for $\omega=2^{m+1}$, so that $x^{\omega^{2}}=x^{2}$. The set of matrices $M(r ; a, b)$ given by

$$
M(r ; a, b)=\left(\begin{array}{cccc}
1 & f(a, b) & a & b \\
0 & r^{\omega+2} & 0 & 0 \\
0 & \left(a^{\omega+1}+b\right) r & r & a^{\omega} r \\
0 & a r^{\omega+1} & 0 & r^{\omega+1}
\end{array}\right)
$$

is closed under multiplication and forms a group G of order $q^{2}(q-1)$, acting on $\mathrm{I}\left(W_{q}\right) / \pi$ as a group of collineation by right multiplication. The group of all collineations of $\operatorname{PG}(3, q)$ leaving the 'self-polar' set

$$
\Omega=\{[0,1,0,0]\} \cup\{[1, f(x, y), x, y] ; x, y \in F\}
$$

invariant is the Suzuki group $S z(q)={ }^{2} B_{2}(q)$, and G is the subgroup of $S z(q)$ that stabilises the point $[0,1,0,0]$.

Extensions to other diameters?

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$.

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$.

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Cayley record holders for larger diameters:

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Cayley record holders for larger diameters:
[Macbeth-Šiagiová-Š-Vetrík '09] For each $d \geq 7$ and $k \geq 4$ we have $C(d, k) \geq k((d-3) / 3)^{k}$.

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Cayley record holders for larger diameters:
[Macbeth-Šiagiová-Š-Vetrík '09] For each $d \geq 7$ and $k \geq 4$ we have $C(d, k) \geq k((d-3) / 3)^{k}$.
Compare with [Canale-Gomez '05]: $n(d, k) \geq\left(\frac{d}{1.6}\right)^{k}$

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Cayley record holders for larger diameters:

$$
\begin{aligned}
& \text { [Macbeth-Šiagiová-Š-Vetrík '09] For each } d \geq 7 \text { and } k \geq 4 \text { we have } \\
& C(d, k) \geq k((d-3) / 3)^{k} \text {. }
\end{aligned}
$$

Compare with [Canale-Gomez '05]: $n(d, k) \geq\left(\frac{d}{1.6}\right)^{k} \ldots$ and with the Moore bound $n(d, k) \leq M(d, k) \sim d^{k}$ for $d \rightarrow \infty \ldots$

Extensions to other diameters?

Temptation: Use this method for an infinite sequence of Cayley graphs of diameter 5, degree $q+o(q)$ and order $q^{5}-o\left(q^{5}\right)$ from a suitable regular group on a subgraph obtained from a generalised hexagon $H(q)$ factored by a polarity; these exist iff $q=3^{2 n+1}$. The corresponding Ree-Tits ovoid is fixed by the Ree group ${ }^{2} G_{2}(q)$; simple group; order $q^{3}\left(q^{3}+1\right)(q-1)$. Unfortunately, by the classification of maximal subgroups of Ree groups [Levchuk and Nuzhin '85], ${ }^{2} G_{2}(q)$ has no subgroup of order $O\left(q^{5}\right), q \rightarrow \infty$.

Cayley record holders for larger diameters:

$$
\begin{aligned}
& \text { [Macbeth-Šiagiová-Š-Vetrík '09] For each } d \geq 7 \text { and } k \geq 4 \text { we have } \\
& C(d, k) \geq k((d-3) / 3)^{k} \text {. }
\end{aligned}
$$

Compare with [Canale-Gomez '05]: $n(d, k) \geq\left(\frac{d}{1.6}\right)^{k} \ldots$ and with the Moore bound $n(d, k) \leq M(d, k) \sim d^{k}$ for $d \rightarrow \infty \ldots \mathrm{Hmmm} \ldots$

How about vertex-transitive graphs?

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on $V T(d, k)$ and $C(d, k)$ was the Moore bound $M(d, k)$.

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on $V T(d, k)$ and $C(d, k)$ was the Moore bound $M(d, k)$.
[Jajcay-Mačaj-Š, submitted] For any fixed $d \geq 3$ and $c \geq 2$ we have $V T(d, k) \leq M(d, k)-c$ for almost all diameters k.

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on $V T(d, k)$ and $C(d, k)$ was the Moore bound $M(d, k)$.
[Jajcay-Mačaj-Š, submitted] For any fixed $d \geq 3$ and $c \geq 2$ we have $V T(d, k) \leq M(d, k)-c$ for almost all diameters k.

Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power.

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on $V T(d, k)$ and $C(d, k)$ was the Moore bound $M(d, k)$.
[Jajcay-Mačaj-Š, submitted] For any fixed $d \geq 3$ and $c \geq 2$ we have $V T(d, k) \leq M(d, k)-c$ for almost all diameters k.

Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power. A simple example [Jajcay-Š '94]:

How about vertex-transitive graphs?

$V T(d, k)$ - largest order of a vertex-transitive graph of degree d and diameter k.

Until recently, the only known general upper bound on $V T(d, k)$ and $C(d, k)$ was the Moore bound $M(d, k)$.
[Jajcay-Mačaj-Š, submitted] For any fixed $d \geq 3$ and $c \geq 2$ we have $V T(d, k) \leq M(d, k)-c$ for almost all diameters k.
Method: Fine counting using necessary conditions for a graph to be vertex-transitive or Cayley, based on counting closed walks of length equal to a prime-power. A simple example [Jajcay-Š '94]:

If a graph Γ is isomorphic to a Cayley graph $C(G, X)$, then, for any prime p, the number of oriented closed walks of length p in Γ, based at a fixed vertex, is congruent mod p to the number of generators of order p in X.

Vertex-transitive record holders

Vertex-transitive record holders

Digraphs $\Gamma_{\delta, k}$: vertices are k-strings of distinct symbols from a set L, $|L|=\delta+1 ; 3 \leq k \leq \delta$. Any vertex $v=x_{1} x_{2} \ldots x_{k}$ sends a dart into each $v_{y}=x_{2} \ldots x_{k} y$ where $y \in L \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and also, for $1 \leq i \leq k-1$, into each v_{i} obtained from v by moving x_{i} to the right end of the string.

Vertex-transitive record holders

Digraphs $\Gamma_{\delta, k}$: vertices are k-strings of distinct symbols from a set L, $|L|=\delta+1 ; 3 \leq k \leq \delta$. Any vertex $v=x_{1} x_{2} \ldots x_{k}$ sends a dart into each $v_{y}=x_{2} \ldots x_{k} y$ where $y \in L \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and also, for $1 \leq i \leq k-1$, into each v_{i} obtained from v by moving x_{i} to the right end of the string.

Suppressing directions in $\Gamma_{\delta, k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs $F(d, k)$ of degree $d=2 \delta-1$ and diameter k; these are the undirected Faber-Moore-Chen graphs of order $o(d, k)=((d+3) / 2)!/((d+3) / 2-k)!$, where $3 \leq k \leq(d+1) / 2$.

Vertex-transitive record holders

Digraphs $\Gamma_{\delta, k}$: vertices are k-strings of distinct symbols from a set L, $|L|=\delta+1 ; 3 \leq k \leq \delta$. Any vertex $v=x_{1} x_{2} \ldots x_{k}$ sends a dart into each $v_{y}=x_{2} \ldots x_{k} y$ where $y \in L \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and also, for $1 \leq i \leq k-1$, into each v_{i} obtained from v by moving x_{i} to the right end of the string.

Suppressing directions in $\Gamma_{\delta, k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs $F(d, k)$ of degree $d=2 \delta-1$ and diameter k; these are the undirected Faber-Moore-Chen graphs of order $o(d, k)=((d+3) / 2)!/((d+3) / 2-k)!$, where $3 \leq k \leq(d+1) / 2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $\quad V T(d, k) \geq o(d, k) \sim(d / 2)^{k}$.

Vertex-transitive record holders

Digraphs $\Gamma_{\delta, k}$: vertices are k-strings of distinct symbols from a set L, $|L|=\delta+1 ; 3 \leq k \leq \delta$. Any vertex $v=x_{1} x_{2} \ldots x_{k}$ sends a dart into each $v_{y}=x_{2} \ldots x_{k} y$ where $y \in L \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and also, for $1 \leq i \leq k-1$, into each v_{i} obtained from v by moving x_{i} to the right end of the string.

Suppressing directions in $\Gamma_{\delta, k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs $F(d, k)$ of degree $d=2 \delta-1$ and diameter k; these are the undirected Faber-Moore-Chen graphs of order $o(d, k)=((d+3) / 2)!/((d+3) / 2-k)!$, where $3 \leq k \leq(d+1) / 2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $\quad V T(d, k) \geq o(d, k) \sim(d / 2)^{k}$. The [M-Š-Š-V '09] bound for Cayley graphs: $\quad C(d, k) \geq k((d-3) / 3)^{k}$.

Vertex-transitive record holders

Digraphs $\Gamma_{\delta, k}$: vertices are k-strings of distinct symbols from a set L, $|L|=\delta+1 ; 3 \leq k \leq \delta$. Any vertex $v=x_{1} x_{2} \ldots x_{k}$ sends a dart into each $v_{y}=x_{2} \ldots x_{k} y$ where $y \in L \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and also, for $1 \leq i \leq k-1$, into each v_{i} obtained from v by moving x_{i} to the right end of the string.

Suppressing directions in $\Gamma_{\delta, k}$ and replacing digons by simple edges yields the (vertex-transitive) undirected graphs $F(d, k)$ of degree $d=2 \delta-1$ and diameter k; these are the undirected Faber-Moore-Chen graphs of order $o(d, k)=((d+3) / 2)!/((d+3) / 2-k)!$, where $3 \leq k \leq(d+1) / 2$.

For fixed k and $d \rightarrow \infty$ [F-M-Ch '93]: $\quad V T(d, k) \geq o(d, k) \sim(d / 2)^{k}$.
The [M-Š-Š-V '09] bound for Cayley graphs: $\quad C(d, k) \geq k((d-3) / 3)^{k}$.
F-M-Ch are Cayley graphs only in rare cases. [Staneková-Ždímalová '10]

A summary of 'asymptotic' bounds

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k}
$$

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\begin{gathered}
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k} \\
\left(\frac{d+3}{2}-\frac{1}{k-1}\right)^{k}<V T(d, k)<d^{k}-c
\end{gathered}
$$

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\begin{gathered}
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k} \\
\left(\frac{d+3}{2}-\frac{1}{k-1}\right)^{k}<V T(d, k)<d^{k}-c \\
k\left(\frac{d}{3}\right)^{k}<C(d, k)<d^{k}-c
\end{gathered}
$$

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\begin{gathered}
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k} \\
\left(\frac{d+3}{2}-\frac{1}{k-1}\right)^{k}<V T(d, k)<d^{k}-c \\
k\left(\frac{d}{3}\right)^{k}<C(d, k)<d^{k}-c
\end{gathered}
$$

Related: Construction of smallest graphs of given degree and girth.

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\begin{gathered}
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k} \\
\left(\frac{d+3}{2}-\frac{1}{k-1}\right)^{k}<V T(d, k)<d^{k}-c \\
k\left(\frac{d}{3}\right)^{k}<C(d, k)<d^{k}-c
\end{gathered}
$$

Related: Construction of smallest graphs of given degree and girth.
Further connections between the degree-diameter problem and the degree-girth problem with finite geometries are definitely worth studying.

A summary of 'asymptotic' bounds

Under some conditions on $d \rightarrow \infty$ and fixed $k \geq 3$:

$$
\begin{gathered}
\left(\frac{d}{1.6}\right)^{k}<n(d, k)<d^{k} \\
\left(\frac{d+3}{2}-\frac{1}{k-1}\right)^{k}<V T(d, k)<d^{k}-c \\
k\left(\frac{d}{3}\right)^{k}<C(d, k)<d^{k}-c
\end{gathered}
$$

Related: Construction of smallest graphs of given degree and girth.
Further connections between the degree-diameter problem and the degree-girth problem with finite geometries are definitely worth studying.

Symmetrically yours, JŠ

