Helical chiral polyhedra

Javier Bracho

Isabel Hubard

Daniel Pellicer

Helical chiral polyhedra

Javier Bracho

Isabel Hubard

Daniel Pellicer

ightharpoonup Polyhedron in a space S

- ightharpoonup Polyhedron in a space S
- vertices (points)

- ightharpoonup Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)

- ightharpoonup Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)

- ightharpoonup Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- ► Every edge belongs to two faces

- ightharpoonup Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- Every edge belongs to two faces
- ► The graph is connected

- ightharpoonup Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- ► Every edge belongs to two faces
- ► The graph is connected
- ▶ the vertex-figures are cycles

Examples

Convex polyhedra

- Convex polyhedra
- Kepler-Poinsot polyhedra

- Convex polyhedra
- Kepler-Poinsot polyhedra

- Convex polyhedra
- Kepler-Poinsot polyhedra
- ► Faces may or may not be planar!

- Convex polyhedra
- Kepler-Poinsot polyhedra
- ► Faces may or may not be planar!
- ► Faces may or may not be finite!

Regular polyhedra

► flag — triple of incident vertex, edge and face

Regular polyhedra

► flag → triple of incident vertex, edge and face

► flag — triple of incident vertex, edge and face

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags (Platonic solids, regular tessellations)

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags (Platonic solids, regular tessellations)
- ▶ automorphism → incidence preserving permutation of vertices, edges and faces

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags (Platonic solids, regular tessellations)
- ▶ automorphism → incidence preserving permutation of vertices, edges and faces
- ► combinatorially regular regular —> automorphism group acts transitively on flags

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags (Platonic solids, regular tessellations)
- ▶ automorphism → incidence preserving permutation of vertices, edges and faces
- ► combinatorially regular regular —> automorphism group acts transitively on flags
 - All polygons are combinatorially regular

- ► flag triple of incident vertex, edge and face
- ▶ regular → symmetry group acts transitively on flags (Platonic solids, regular tessellations)
- ▶ automorphism → incidence preserving permutation of vertices, edges and faces
- ► combinatorially regular regular → automorphism group acts transitively on flags
 - All polygons are combinatorially regular
 - All rectangular prisms are combinatorially regular

$$Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$$

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_0 changes the vertex while fixing the edge and face

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_0 changes the vertex while fixing the edge and face

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_1 changes the edge while fixing the vertex and face

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_1 changes the edge while fixing the vertex and face

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_2 changes the face while fixing the vertex and edge

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_2 changes the face while fixing the vertex and edge

 $Sym(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ ρ_2 changes the face while fixing the vertex and edge

They are not always reflections!

 $\sigma_1 := \rho_0 \rho_1$ rotates along the face

 $\sigma_1 := \rho_0 \rho_1$ rotates along the face

 $\sigma_1 := \rho_0 \rho_1$ rotates along the face $\sigma_2 := \rho_1 \rho_2$ rotates along the vertex

 $\sigma_1 := \rho_0 \rho_1$ rotates along the face $\sigma_2 := \rho_1 \rho_2$ rotates along the vertex

 $\sigma_1 := \rho_0 \rho_1$ rotates along the face $\sigma_2 := \rho_1 \rho_2$ rotates along the vertex

They are not always rotations!

▶ Planar faces

► Planar faces (convex or star-shape)

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces
- ▶ Helical faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces
- ▶ Helical faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces
- ▶ Helical faces

▶ The vertex-figures are

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces
- ▶ The vertex-figures are
 - planar

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces
- ▶ The vertex-figures are
- planar
- skew

Regular polyhedra in \mathbb{E}^3 (Grünbaum, Dress)

Regular polyhedra in \mathbb{E}^3 (Grünbaum, Dress)

18 finite

Regular polyhedra in \mathbb{E}^3 (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces

Regular polyhedra in \mathbb{E}^3 (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces
 - 6 with skew vertex-figures

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces
 - 6 with skew vertex-figures
 - 3 with planar vertex-figures

The projective space \mathbb{P}^3

▶ Projective space $\longrightarrow \mathbb{S}^3/\langle -Id \rangle$

The projective space \mathbb{P}^3

▶ Projective space $\longrightarrow \mathbb{S}^3/\langle -Id \rangle$

The projective space \mathbb{P}^3

▶ Projective space $\longrightarrow \mathbb{S}^3/\langle -Id \rangle$

Lines

Lines

Lines

▶ Distance \longrightarrow arc length on \mathbb{S}^3

- ▶ Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents

- ▶ Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents
- ▶ Isometries

- ▶ Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents
- ▶ Isometries
- Rotations

- ▶ Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents
- ▶ Isometries
- Rotations
- Reflections

- ▶ Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents
- ▶ Isometries
- Rotations
- Reflections
- Rotatory reflections

- ightharpoonup Distance \longrightarrow arc length on \mathbb{S}^3
- ► Angles angle between tangents
- ▶ Isometries
- Rotations
- Reflections
- Rotatory reflections
- Double reflections (twists)

▶ Planar faces

► Planar faces (convex or star-shape)

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- ➤ Zigzag faces
- ▶ Helical faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces
- ► The vertex-figures are

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces
- ▶ The vertex-figures are
 - planar

- ► Planar faces (convex or star-shape)
- ▶ Skew faces
- Zigzag faces
- ▶ Helical faces
- ▶ The vertex-figures are
- planar
- skew

► Arocha, Bracho, Montejano (2000) — regular polyhedra with planar faces

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures
 - 42 plus opposites

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures
 - 42 plus opposites
 - Infinite family of toroids

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures
 - 42 plus opposites
 - Infinite family of toroids
- ightharpoonup McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^4

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures
 - 42 plus opposites
 - Infinite family of toroids
- ightharpoonup McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^4
 - 46 with helical faces and planar vertex-figures

- ► Arocha, Bracho, Montejano (2000) → regular polyhedra with planar faces
 - Planar vertex-figures 18 plus opposites
 - Skew vertex-figures
 - 42 plus opposites
 - Infinite family of toroids
- ightharpoonup McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^4
- 46 with helical faces and planar vertex-figures
 - Infinite family

σ_1 rotates along the face

 σ_1 rotates along the face σ_2 rotates along the vertex

 σ_1 rotates along the face σ_2 rotates along the vertex

$$Sym(\mathcal{P}) = \langle \sigma_1, \sigma_2 \rangle$$

Chiral polyhedra

 σ_1 rotates along the face σ_2 rotates along the vertex

$$Sym(\mathcal{P}) = \langle \sigma_1, \sigma_2 \rangle$$

 $Sym(\mathcal{P})$ contains no symmetry ρ_i

Chiral polyhedra

 σ_1 rotates along the face σ_2 rotates along the vertex

$$Sym(\mathcal{P}) = \langle \sigma_1, \sigma_2 \rangle$$

 $Sym(\mathcal{P})$ contains no symmetry ρ_i

 $Sym(\mathcal{P})$ contains no element inverting σ_1 and σ_2

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^3 .

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^3 .

They are classified in 6 families

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^3 .

They are classified in 6 families

Polyhedra in 3 of the families have skew faces

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^3 .

They are classified in 6 families

- Polyhedra in 3 of the families have skew faces
- Polyhedra in the other 3 families have helical faces

Problem 1 (2011) Find all chiral polyhedra in \mathbb{P}^3

Problem 1 (2011) Find all chiral polyhedra in \mathbb{P}^3

Subproblem 1 (2014) Find all chiral polyhedra in \mathbb{P}^3 with helical faces

► Helical faces are generated by double rotations

► Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces in \mathbb{P}^3 or \mathbb{R}^3

- ► Helical faces are generated by double rotations
- **Theorem** All chiral polyhedra with helical faces in \mathbb{P}^3 or \mathbb{R}^3
 - Have planar vertex-figures

- ► Helical faces are generated by double rotations
- **Theorem** All chiral polyhedra with helical faces in \mathbb{P}^3 or \mathbb{R}^3
 - Have planar vertex-figures
 - No vertex belongs to the plane of its vertex-figure

- ► Helical faces are generated by double rotations
- **Theorem** All chiral polyhedra with helical faces in \mathbb{P}^3 or \mathbb{R}^3
 - Have planar vertex-figures
 - No vertex belongs to the plane of its vertex-figure

Proof

- ► Helical faces are generated by double rotations
- **Theorem** All chiral polyhedra with helical faces in \mathbb{P}^3 or \mathbb{R}^3
 - Have planar vertex-figures
 - No vertex belongs to the plane of its vertex-figure

Proof

The vertex-figures are planar or skew

- $ightharpoonup \sigma_1$ is a double rotation
- $ightharpoonup \sigma_2$ is a rotation

- $ightharpoonup \sigma_1$ is a double rotation
- $ightharpoonup \sigma_2$ is a rotation
- ▶ The base vertex belongs to the axis of σ_2

- $ightharpoonup \sigma_1$ is a double rotation
- $ightharpoonup \sigma_2$ is a rotation
- ▶ The base vertex belongs to the axis of σ_2
- ► Given σ_1 , σ_2 and the base vertex we can reconstruct the polyhedron

- $ightharpoonup \sigma_1$ is a double rotation
- $ightharpoonup \sigma_2$ is a rotation
- ▶ The base vertex belongs to the axis of σ_2
- ▶ Given σ_1 , σ_2 and the base vertex we can reconstruct the polyhedron
- ▶ Choosing another vertex on the axis of σ_2 yields another polyhedron

▶ Distinct choices of base vertex on the axis of σ_2 may yield geometrically distinct polyhedra

- ▶ Distinct choices of base vertex on the axis of σ_2 may yield geometrically distinct polyhedra
- ► These polyhedra are mildly different if the choices of base vertices are close to each other

- ▶ Distinct choices of base vertex on the axis of σ_2 may yield geometrically distinct polyhedra
- ► These polyhedra are mildly different if the choices of base vertices are close to each other
- ► If for some choice of base vertex it belongs to the plane of its vertex-figure then the polyhedron is regular

▶ In \mathbb{E}^3 there is always such point!

- ▶ In \mathbb{E}^3 there is always such point!
- ▶ That is, given a screw motion S and a line l not parallel and not intersecting the axis of S then there exists a point x on l such that xS x is perpendicular to l

- ▶ In \mathbb{E}^3 there is always such point!
- ▶ That is, given a screw motion S and a line l not parallel and not intersecting the axis of S then there exists a point x on l such that xS x is perpendicular to l

Theorem (P, Weiss) All chiral polyhedra in \mathbb{E}^3 with helical faces can be obtained from a regular polyhedron by moving the base vertex along the axis of σ_1

▶ In \mathbb{P}^3 there is always a good point!

- ▶ In \mathbb{P}^3 there is always a good point!
- $(\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_1)^2 id$

▶ In \mathbb{P}^3 there is always a good point!

$$(\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_1)^2 id$$

Let L_1 be the axis of σ_2 , then

▶ In \mathbb{P}^3 there is always a good point!

$$(\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_1)^2 id$$

Let L_1 be the axis of σ_2 , then

$$L_1 = L_1(\sigma_2\sigma_1)^2 = L_1\sigma_1\sigma_2\sigma_1$$

▶ In \mathbb{P}^3 there is always a good point!

$$(\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_1)^2 id$$

Let L_1 be the axis of σ_2 , then

$$L_1=L_1(\sigma_2\sigma_1)^2=L_1\sigma_1\sigma_2\sigma_1$$
 That is, $L_1\sigma_1\sigma_2=L_1\sigma_1^{-1}$

► All chiral helical polyhedra come from deformations or regular helical polyhedra

- ► All chiral helical polyhedra come from deformations or regular helical polyhedra
- ► Not all regular helical polyhedra deform into chiral helical polyhedra

- ► All chiral helical polyhedra come from deformations or regular helical polyhedra
- ► Not all regular helical polyhedra deform into chiral helical polyhedra

ullet All regular polyhedra in \mathbb{P}^3 have been studied

- ullet All regular polyhedra in \mathbb{P}^3 have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^3

- ullet All regular polyhedra in \mathbb{P}^3 have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^3
- We are close to the classification of helical chiral polyhedra in \mathbb{P}^3

- ullet All regular polyhedra in \mathbb{P}^3 have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^3
- We are close to the classification of helical chiral polyhedra in \mathbb{P}^3
- We know helical chiral polyhedra in the hyperbolic space too!

