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» Polyhedron in a space S

» vertices (points)
» edges (line segments between vertices)
» faces (cycles or infinite paths)

» Every edge belongs to two faces
» The graph is connected
» the vertex-figures are cycles
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Regular. polyhedra

» flag — triple of incident vertex, edge and face
» regular — symmetry group acts transitively
on flags (Platonic solids, regular tessellations)

» automorphism —— Incidence preserving
permutation of vertices, edges and faces

» combinatorially regular reqular —
automorphism group acts transitively on flags

» All polygons are combinatorially regular
» All rectangular prisms are combinatorially

regular I
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Regular. polyhedra

Sym(P) = (po, p1, p2)
0o changes the face while fixing the vertex and

edge

They are not always reflections! I
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Regular. polyhedra

o1 := pop; rotates along the face
o9 1= p1po Fotates along the vertex

They are not always rotations! I
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6 Infinite with finite planar faces
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Regular polyhedra in E° (Griinbaum, Dress)

18 finite

6 Infinite with finite planar faces
6 Infinite with finite skew faces
9 with zigzag faces

© o o o @

9 with helical faces
» 6 with skew vertex-figures
» 3 with planar vertex-figures
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Metric

» Distance — arc length on S*
» Angles — angle between tangents

» Isometries

» Rotations

» Reflections

» Rotatory reflections

» Double reflections (twists)
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» Arocha, Bracho, Montejano (2000) — regular
polyhedra with planar faces

# Planar vertex-figures 18 plus opposites

» Skew vertex-figures
» 42 plus opposites
» Infinite family of toroids

» McMullen (2007) — finite regular polyhedra in E*

#» 46 with helical faces and planar vertex-figures
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» Chiral polyhedron — symmetry group
Induces two orbits on flags with adjacent flags on
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Chiral polyhedra

o, rotates along the face
o9 rotates along the vertex

Sym(P) = (o1, 09)
Sym/(P) contains no symmetry p;

Sym(P) contains no element inverting o, and o
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Chiral helical polyhedra

Egon Schulte (2005) found all chiral polyhedra in
&3,

They are classified in 6 families

» Polyhedra in 3 of the families have skew faces

» Polyhedra in the other 3 families have helical
faces

B
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Problem 1 (2011) Find all chiral polyhedra
in P

Subproblem 1 (2014) Find all chiral
polyhedra in P? with helical faces
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Chiral helical polyhedra

» Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces
in P° or R’
» Have planar vertex-figures

# No vertex belongs to the plane of its
vertex-figure

Proof
The vertex-figures are planar or skew

B
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» o IS a double rotation
» 05 IS a rotation

» The base vertex belongs to the axis of o

» Given oy, 0, and the base vertex we can
reconstruct the polyhedron

» Choosing another vertex on the axis of o5

yields another polyhedron
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Chiral helical polyhedra

» Distinct choices of base vertex on the axis of
o9 may yield geometrically distinct polyhedra

» These polyhedra are mildly different if the
choices of base vertices are close to each other

» If for some choice of base vertex it belongs to
the plane of its vertex-figure then the polyhedron

IS regular
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» In E? there is always such point!

» That is, given a screw motion S and a line [ not
parallel and not intersecting the axis of S then
there exists a point x on [ such that xS — x IS
perpendicular to [

Theorem (P, Weiss) All chiral polyhedra in E?
with helical faces can be obtained from a reqular
polyhedron by moving the base vertex along the

axis of o I
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Chiral helical polyhedra

» In P° there is always a good point!
> (0'1(72)2 — (OQO’O%CZ

Let L; be the axis of 0,, then
Ly = L1(0201) — L1010201
That | 1S, Lio109 = LlO'
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» All chiral helical polyhedra come from
deformations or regular helical polyhedra
» Not all regular helical polyhedra deform into

chiral helical polyhedra
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Conclusions

» All regular polyhedra in P have been studied

» We are still far from the complete
classification of chiral polyhedra in P*

» We are close to the classification of helical
chiral polyhedra in P*

» We know helical chiral polyhedra in the
hyperbolic space too!
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