Helical chiral polyhedra

Javier Bracho
Isabel Hubard
Daniel Pellicer

Helical chiral polyhedra

Javier Bracho
Isabel Hubard
Daniel Pellicer

Polyhedra

- Polyhedron in a space S

Polyhedra

- Polyhedron in a space S
- vertices (points)

Polyhedra

- Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)

Polyhedra

- Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)

Polyhedra

- Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- Every edge belongs to two faces

Polyhedra

- Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- Every edge belongs to two faces
- The graph is connected

Polyhedra

- Polyhedron in a space S
- vertices (points)
- edges (line segments between vertices)
- faces (cycles or infinite paths)
- Every edge belongs to two faces
- The graph is connected the vertex-figures are cycles

Polyhedra

Polyhedra

Examples

Polyhedra

Examples

- Convex polyhedra

Polyhedra

Examples

- Convex polyhedra
- Kepler-Poinsot polyhedra

Polyhedra

Examples

- Convex polyhedra
- Kepler-Poinsot polyhedra

Polyhedra

Examples

- Convex polyhedra
- Kepler-Poinsot polyhedra
- Faces may or may not be planar!

Polyhedra

Examples

- Convex polyhedra
- Kepler-Poinsot polyhedra
- Faces may or may not be planar!
- Faces may or may not be finite!

Polyhedra

Polyhedra

Polyhedra

Polyhedra

Polyhedra

Polyhedra

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags (Platonic solids, regular tessellations)

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags (Platonic solids, regular tessellations) - automorphism \longrightarrow incidence preserving permutation of vertices, edges and faces

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags (Platonic solids, regular tessellations) - automorphism \longrightarrow incidence preserving permutation of vertices, edges and faces - combinatorially regular regular \longrightarrow automorphism group acts transitively on flags

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags (Platonic solids, regular tessellations) - automorphism \longrightarrow incidence preserving permutation of vertices, edges and faces \downarrow combinatorially regular regular \longrightarrow automorphism group acts transitively on flags
- All polygons are combinatorially regular

Regular polyhedra

- flag \longrightarrow triple of incident vertex, edge and face - regular \longrightarrow symmetry group acts transitively on flags (Platonic solids, regular tessellations) - automorphism \longrightarrow incidence preserving permutation of vertices, edges and faces \downarrow combinatorially regular regular \longrightarrow automorphism group acts transitively on flags
- All polygons are combinatorially regular
- All rectangular prisms are combinatorially regular

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{0} changes the vertex while fixing the edge and face

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{0} changes the vertex while fixing the edge and face

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{1} changes the edge while fixing the vertex and face

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{1} changes the edge while fixing the vertex and face

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{2} changes the face while fixing the vertex and edge

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{2} changes the face while fixing the vertex and edge

Regular polyhedra

$\operatorname{Sym}(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$
ρ_{2} changes the face while fixing the vertex and edge

They are not always reflections!

Regular polyhedra

$\sigma_{1}:=\rho_{0} \rho_{1}$ rotates along the face

Regular polyhedra

$\sigma_{1}:=\rho_{0} \rho_{1}$ rotates along the face

Regular polyhedra

$\sigma_{1}:=\rho_{0} \rho_{1}$ rotates along the face $\sigma_{2}:=\rho_{1} \rho_{2}$ rotates along the vertex

Regular polyhedra

$\sigma_{1}:=\rho_{0} \rho_{1}$ rotates along the face $\sigma_{2}:=\rho_{1} \rho_{2}$ rotates along the vertex

Regular polyhedra

$\sigma_{1}:=\rho_{0} \rho_{1}$ rotates along the face $\sigma_{2}:=\rho_{1} \rho_{2}$ rotates along the vertex

They are not always rotations!

Regular polyhedra in \mathbb{E}^{3}

Planar faces

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces

Regular polyhedra in \mathbb{E}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{E}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{E}^{3}

- Planar faces (convex or star-shape)
- Skew faces
- Zigzag faces
-••

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces

Regular polyhedra in \mathbb{E}^{3}

- Planar faces (convex or star-shape)
- Skew faces
- Zigzag faces
- Helical faces

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces
Zigzag faces
Helical faces

- The vertex-figures are

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces
- The vertex-figures are
- planar

Regular polyhedra in \mathbb{E}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces
- The vertex-figures are
- planar
- skew

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces
. 6 with skew vertex-figures

Regular polyhedra in \mathbb{E}^{3}

Regular polyhedra in \mathbb{E}^{3} (Grünbaum, Dress)

- 18 finite
- 6 infinite with finite planar faces
- 6 infinite with finite skew faces
- 9 with zigzag faces
- 9 with helical faces
. 6 with skew vertex-figures
. 3 with planar vertex-figures
$\{\infty, 3\}^{(b)}$

$\{\infty, 3\}^{(b)}$

The projective space \mathbb{P}^{3}

- Projective space $\longrightarrow \mathbb{S}^{3} /\langle-I d\rangle$

The projective space \mathbb{P}^{3}

- Projective space $\longrightarrow \mathbb{S}^{3} /\langle-I d\rangle$

The projective space \mathbb{P}^{3}

- Projective space $\longrightarrow \mathbb{S}^{3} /\langle-I d\rangle$

Lines

Lines

Lines

Planes

Planes

Metric

- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Isometries
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Isometries
- Rotations
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Isometries
- Rotations
- Reflections
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Isometries
- Rotations
- Reflections
- Rotatory reflections
- Distance \longrightarrow arc length on \mathbb{S}^{3}
- Angles \longrightarrow angle between tangents
- Isometries
- Rotations
- Reflections
- Rotatory reflections
- Double reflections (twists)

Regular polyhedra in \mathbb{P}^{3}

- Planar faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)
- Skew faces

Regular polyhedra in \mathbb{P}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

- Zigzag faces

Regular polyhedra in \mathbb{P}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces

Regular polyhedra in \mathbb{P}^{3}

- Planar faces (convex or star-shape)

Skew faces

- Zigzag faces
- Helical faces

Regular polyhedra in \mathbb{P}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces
- The vertex-figures are

Regular polyhedra in \mathbb{P}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces
- The vertex-figures are
- planar

Regular polyhedra in \mathbb{P}^{3}

Planar faces (convex or star-shape)
Skew faces

- Zigzag faces
- Helical faces
- The vertex-figures are
- planar
- skew

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures
- 42 plus opposites

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures
- 42 plus opposites
- Infinite family of toroids

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures
- 42 plus opposites
- Infinite family of toroids
- McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^{4}

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures
- 42 plus opposites
- Infinite family of toroids
- McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^{4}
- 46 with helical faces and planar vertex-figures

Regular polyhedra in \mathbb{P}^{3}

- Arocha, Bracho, Montejano (2000) \longrightarrow regular polyhedra with planar faces
- Planar vertex-figures 18 plus opposites
- Skew vertex-figures
- 42 plus opposites
- Infinite family of toroids
- McMullen (2007) \longrightarrow finite regular polyhedra in \mathbb{E}^{4}
- 46 with helical faces and planar vertex-figures
- Infinite family

Regular polyhedra in \mathbb{P}^{3}

Regular polyhedra in \mathbb{P}^{3}

$\{2 p, p\}$

Regular polyhedra in \mathbb{P}^{3}

$\{2 p, p\}$

Regular polyhedra in \mathbb{P}^{3}

$\{2 p, p\}$

Regular polyhedra in \mathbb{P}^{3}

$\{2 p, p\}$

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

- Chiral polyhedron \longrightarrow symmetry group induces two orbits on flags with adjacent flags on different orbits

Chiral polyhedra

Chiral polyhedra

Chiral polyhedra

σ_{1} rotates along the face

Chiral polyhedra

σ_{1} rotates along the face σ_{2} rotates along the vertex

Chiral polyhedra

σ_{1} rotates along the face

 σ_{2} rotates along the vertex$$
\operatorname{Sym}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}\right\rangle
$$

Chiral polyhedra

σ_{1} rotates along the face σ_{2} rotates along the vertex

$$
\operatorname{Sym}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}\right\rangle
$$

$\operatorname{Sym}(\mathcal{P})$ contains no symmetry ρ_{i}

Chiral polyhedra

σ_{1} rotates along the face σ_{2} rotates along the vertex
$\operatorname{Sym}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$
$\operatorname{Sym}(\mathcal{P})$ contains no symmetry ρ_{i}
$\operatorname{Sym}(\mathcal{P})$ contains no element inverting σ_{1} and σ_{2}

Chiral helical polyhedra

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^{3}.

Chiral helical polyhedra

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^{3}.
They are classified in 6 families

Chiral helical polyhedra

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^{3}.
They are classified in 6 families

- Polyhedra in 3 of the families have skew faces

Chiral helical polyhedra

Egon Schulte (2005) found all chiral polyhedra in \mathbb{E}^{3}.
They are classified in 6 families

- Polyhedra in 3 of the families have skew faces
- Polyhedra in the other 3 families have helical faces

Chiral helical polyhedra

Problem 1 (2011) Find all chiral polyhedra in \mathbb{P}^{3}

Chiral helical polyhedra

Problem 1 (2011) Find all chiral polyhedra in \mathbb{P}^{3}

Subproblem 1 (2014) Find all chiral
polyhedra in \mathbb{P}^{3} with helical faces

Chiral helical polyhedra

- Helical faces are generated by double rotations

Chiral helical polyhedra

- Helical faces are generated by double rotations Theorem All chiral polyhedra with helical faces in \mathbb{P}^{3} or \mathbb{R}^{3}

Chiral helical polyhedra

- Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces in \mathbb{P}^{3} or \mathbb{R}^{3}

- Have planar vertex-figures

Chiral helical polyhedra

- Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces in \mathbb{P}^{3} or \mathbb{R}^{3}

- Have planar vertex-figures
- No vertex belongs to the plane of its vertex-figure

Chiral helical polyhedra

- Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces in \mathbb{P}^{3} or \mathbb{R}^{3}

- Have planar vertex-figures
- No vertex belongs to the plane of its vertex-figure
Proof

Chiral helical polyhedra

- Helical faces are generated by double rotations

Theorem All chiral polyhedra with helical faces in \mathbb{P}^{3} or \mathbb{R}^{3}

- Have planar vertex-figures
- No vertex belongs to the plane of its vertex-figure
Proof
The vertex-figures are planar or skew

Chiral helical polyhedra

Chiral helical polyhedra

- σ_{1} is a double rotation
- σ_{2} is a rotation

Chiral helical polyhedra

- σ_{1} is a double rotation
- σ_{2} is a rotation
- The base vertex belongs to the axis of σ_{2}

Chiral helical polyhedra

- σ_{1} is a double rotation
- σ_{2} is a rotation
- The base vertex belongs to the axis of σ_{2}
- Given σ_{1}, σ_{2} and the base vertex we can reconstruct the polyhedron

Chiral helical polyhedra

- σ_{1} is a double rotation
- σ_{2} is a rotation
- The base vertex belongs to the axis of σ_{2}
- Given σ_{1}, σ_{2} and the base vertex we can reconstruct the polyhedron
- Choosing another vertex on the axis of σ_{2} yields another polyhedron

Chiral helical polyhedra

- Distinct choices of base vertex on the axis of σ_{2} may yield geometrically distinct polyhedra

Chiral helical polyhedra

- Distinct choices of base vertex on the axis of σ_{2} may yield geometrically distinct polyhedra
- These polyhedra are mildly different if the choices of base vertices are close to each other

Chiral helical polyhedra

- Distinct choices of base vertex on the axis of σ_{2} may yield geometrically distinct polyhedra
- These polyhedra are mildly different if the choices of base vertices are close to each other
- If for some choice of base vertex it belongs to the plane of its vertex-figure then the polyhedron is regular

Chiral helical polyhedra

- In \mathbb{E}^{3} there is always such point!

Chiral helical polyhedra

- In \mathbb{E}^{3} there is always such point!

That is, given a screw motion S and a line l not parallel and not intersecting the axis of S then there exists a point x on l such that $x S-x$ is perpendicular to l

Chiral helical polyhedra

In \mathbb{E}^{3} there is always such point!

- That is, given a screw motion S and a line l not parallel and not intersecting the axis of S then there exists a point x on l such that $x S-x$ is perpendicular to l

Theorem (P, Weiss) All chiral polyhedra in \mathbb{E}^{3} with helical faces can be obtained from a regular polyhedron by moving the base vertex along the axis of σ_{1}

Chiral helical polyhedra

Chiral helical polyhedra

Chiral helical polyhedra

Chiral helical polyhedra

- In \mathbb{P}^{3} there is always a good point!

Chiral helical polyhedra

- In \mathbb{P}^{3} there is always a good point!
- $\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{2} \sigma_{1}\right)^{2} i d$

Chiral helical polyhedra

- In \mathbb{P}^{3} there is always a good point!
- $\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{2} \sigma_{1}\right)^{2} i d$

Let L_{1} be the axis of σ_{2}, then

Chiral helical polyhedra

- In \mathbb{P}^{3} there is always a good point!
- $\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{2} \sigma_{1}\right)^{2} i d$

Let L_{1} be the axis of σ_{2}, then
$L_{1}=L_{1}\left(\sigma_{2} \sigma_{1}\right)^{2}=L_{1} \sigma_{1} \sigma_{2} \sigma_{1}$

Chiral helical polyhedra

- In \mathbb{P}^{3} there is always a good point!
- $\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{2} \sigma_{1}\right)^{2} i d$

Let L_{1} be the axis of σ_{2}, then
$L_{1}=L_{1}\left(\sigma_{2} \sigma_{1}\right)^{2}=L_{1} \sigma_{1} \sigma_{2} \sigma_{1}$
That is, $L_{1} \sigma_{1} \sigma_{2}=L_{1} \sigma_{1}^{-1}$

Chiral helical polyhedra

Chiral helical polyhedra

- All chiral helical polyhedra come from deformations or regular helical polyhedra

Chiral helical polyhedra

- All chiral helical polyhedra come from deformations or regular helical polyhedra - Not all regular helical polyhedra deform into chiral helical polyhedra

Chiral helical polyhedra

- All chiral helical polyhedra come from deformations or regular helical polyhedra - Not all regular helical polyhedra deform into chiral helical polyhedra

Conclusions

- All regular polyhedra in \mathbb{P}^{3} have been studied

Conclusions

- All regular polyhedra in \mathbb{P}^{3} have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^{3}

Conclusions

- All regular polyhedra in \mathbb{P}^{3} have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^{3}
- We are close to the classification of helical chiral polyhedra in \mathbb{P}^{3}

Conclusions

- All regular polyhedra in \mathbb{P}^{3} have been studied
- We are still far from the complete classification of chiral polyhedra in \mathbb{P}^{3}
- We are close to the classification of helical chiral polyhedra in \mathbb{P}^{3}
- We know helical chiral polyhedra in the hyperbolic space too!

