

Exploring the concept of perfection in 3-hypergraphs

Deborah Oliveros

University of Pannonia

Searching for perfection in hypergraphs

Natalia Gacía Colin

Joint work with

Amanda Montejano

Luis Montejano

Given a Partially order set

Given a Partially order set

You may construct an oriented graph.

Given a Partially order set

You may construct an oriented graph. a<b<c, a<b<d

Comparability graphs

Graphs that admit a transitive orientation

Comparability graphs

Graphs that admit a transitive orientation

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Intersection graphs of intervals

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Intersection graphs of intervals

comparability graphs

Given H a 3-hypergraph what is $\chi(H)$?

Given H a 3-hypergraph what is $\chi(H)$?

No monochromatic edges

Given H a 3-hypergraph what is $\chi(H)$?

5

No monochromatic edges

Given H a 3-hypergraph what is $\chi(H)$?

If K_n^3 is the compleat hypergraph $\chi(K_n^3) = \lceil n/2 \rceil$

Clearly $\lceil \omega(H)/2 \rceil \leq \chi(H)$

A 3-hypergraph H is perfect if $\chi(H) = \lceil \omega(H)/2 \rceil$.

One nice example

One nice example

One nice example

One nice example

One nice example

One nice example

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^1 and let H be the 3-hypergraph associated to \mathcal{F} . Then $\left\lceil \frac{\omega(H)}{2} \right\rceil = \chi(H).$

n=2 $\omega(H)=5$

Assign color yellow to I_0 together with all the ones intersecting I_0

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^1 and let H be the 3-hypergraph associated to \mathcal{F} . Then $\left\lceil \frac{\omega(H)}{2} \right\rceil = \chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^1 and let H be the 3-hypergraph associated to \mathcal{F} . Then $\left\lceil \frac{\omega(H)}{2} \right\rceil = \chi(H).$ for every 3 intervals 2 of them have a Point in common Suppose $\omega(H) = 2n + 1$ Proof I_0 I_1 I_4 I_2 I_1 I_3 I_4 I_2 l_3

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^1 and let H be the 3-hypergraph associated to \mathcal{F} . Then $\left\lceil \frac{\omega(H)}{2} \right\rceil = \chi(H)$.

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Intersection graphs of intervals

comparability graphs

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Intersection graphs of intervals

Comparability graphs

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Bipartite graphs

Intersection graphs of intervals

Comparability graphs

Transitive oriented graph

Transitive oriented graph

Transitive oriented graph

Partial order set

x < y and y < z

implies x<z

 $X := \{x_1, x_2, x_3, x_4, x_5\}$

Transitive oriented graph

Transitive tournament

Partial order set

 $x_1 < x_2 < x_3, x_5 < x_2, x_4 < x_3$

Total order

Linear order

 $x_1 < x_5 < x_2 < x_4 < x_3$

Let X be a set of cardinality n.

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

cyclic: $(x, y, z) \in T \Rightarrow (y, z, x) \in T;$

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

cyclic: $(x, y, z) \in T \Rightarrow (y, z, x) \in T;$ asymmetric: $(x, y, z) \in T \Rightarrow (z, y, x) \notin T;$

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

cyclic: $(x, y, z) \in T \Rightarrow (y, z, x) \in T;$ asymmetric: $(x, y, z) \in T \Rightarrow (z, y, x) \notin T;$ and

transitive: $(x, y, z), (x, z, w) \in T \Rightarrow (x, y, w) \in T$.

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

cyclic: $(x, y, z) \in T \Rightarrow (y, z, x) \in T;$ asymmetric: $(x, y, z) \in T \Rightarrow (z, y, x) \notin T;$ and

transitive: $(x, y, z), (x, z, w) \in T \Rightarrow (x, y, w) \in T$. If in addition T is total

then T is called a *complete cyclic order*.

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation $T \subset X^3$

cyclic: $(x, y, z) \in T \Rightarrow (y, z, x) \in T;$ asymmetric: $(x, y, z) \in T \Rightarrow (z, y, x) \notin T;$ and

transitive: $(x, y, z), (x, z, w) \in T \Rightarrow (x, y, w) \in T$.

Alles, P., Nesetril, P.J., Poljak(1991)

Example: Ciclic Permutations

 $X := \{x_1, x_2, x_3, x_4, x_5\}$

Ciclic order

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Transitive oriented hypergraph?

Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

Transitive oriented hypergraphs.

Observations:

Every oriented 3-subhypergraph of an oriented 3-hypergraph is oriented

Comparability 3-hypergraphs.

A comparability 3-hypergraphs is the class of non oriented 3-hypergraphs, which can be transitively oriented

Transitive oriented hypergraphs.

Observations:

There is a natural correspondence between partial cyclic orders and transitive oriented 3-hypergraphs

Observations: $(x_1, x_2, x_3), (x_1, x_5, x_2), (x_5, x_3, x_2)$ (x_1, x_3, x_5) and (x_1, x_4, x_5)

partial cyclic order

There is a natural correspondence between partial cyclic orders and transitive oriented 3-hypergraphs

 x_2

 x_5

 x_3

 x_4

A transitive oriented 3-hypergraph, H, with $E(H) = \binom{V(H)}{3}$ is called a 3-hypertournament.

Let TT_n^3 be the oriented 3-hypergraph with $V(TT_n^3) = [n]$ and $E(H) = {[n] \choose 3}$, where the orientation of each edge is the one induced by the cyclic ordering $(12 \dots n)$

Theorem 0.1 Every transitive 3-hypertournament on n vertices is isomorphic to TT_n^3 .

(1991) Peter Alles, Peter Jaroslav Nesetril and Svatopluk Poljak.

An oriented 3-hypergraph H which is a spanning subhypergraph of TT_n^3 is called *self-transitive* if it is transitive and its complement is also transitive.

Theorem 0.2 *H* is an oriented cyclic permutation 3-hypergraph if and only if *H* is self transitive.

Clearly complete graphs satisfy $\chi(K_n^3) = \lceil \frac{n}{2} \rceil$

then for any 3-hypergraph the following equation holds:

$$\left\lceil \frac{\omega(H)}{2} \right\rceil \le \chi(H).$$

Is it true that for comparability 3-hypergraphs $\chi(H) = \left\lceil \frac{\omega(H)}{2} \right\rceil$?

Is it true that for comparability 3-hypergraphs $\chi(H) = \left\lceil \frac{\omega(H)}{2} \right\rceil$?

No!

Is it true that for comparability 3-hypergraphs $\chi(H) = \left| \frac{\omega(H)}{2} \right|$?

We exhibit a family of comparability 3-hypergraphs for which the difference, $\chi(H) - \left\lceil \frac{\omega(H)}{2} \right\rceil$, is arbitrarily large.

If H is a cyclic permutation 3-hypergraph is true that $\chi(H) = \lceil w(H)/2 \rceil$?

No.....

If H is a cyclic permutation 3-hypergraph is true that $\chi(H) = \lceil w(H)/2 \rceil$?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H) = \lceil w(H)/2 \rceil$?

No.....

 $\omega(H) = 4$ but $\chi(H) = 3$

If H is a cyclic permutation 3-hypergraph is true that $\chi(H) = \lceil w(H)/2 \rceil$?

No.... but

If H is a cyclic permutation 3-hypergraph is true that $\chi(H) = \lfloor w(H)/2 \rfloor$?

No..... but

Theorem: Let H be a cyclic permutation 3-hypergraph, then $\chi(H) \leq \omega(H) - 1$. Furthermore, this bound is tight.

Thanks for your attention!

