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No monochromatic edges
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If K2 is the compleat hypergraph x(K?2) = [n/2]
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One nice example

Let F be a finite family of closed intervals in the circle S,
and let H = H(F) be the 3-hypergraph with V(H) = F
such that a triple of intervals defines and edge of H if and only if the three
intervals are pairwise disjoint.
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L5




Transitive oriented graphs

Transitive oriented graph Partial order set

L2
ﬂ' x<y and y<z
L1 X3

Total order implies x<z

Transitive tournament Linear order
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then T’ is called a complete cyclic order.



Partial ciclic orders

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T' C X°

cyclic: (x,y,2) €T = (y,2z,x) € T}
asymmetric: (x,y,z) €T = (z,y,x) € T

and

transitive: (x,y,z2),(z,z,w) €T = (x,y,w) € T.

Alles, P, Nesetril, PJ., Poljak(1991)



Example: Ciche Permutations

X = {xlv L2, L3, L4, 513'5}

X3

Ciclic order
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Start with a 3-hypergraph

uniform 3-hypergraph

T2
T What is an orientation?
T —y Py X3
4 what is transitivity?
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Start with a 3-hypergraph

uniform 3-hypergraph

What is an orientation?

what is transitivity?



lransitive oriented hypergraphs.

Observations: Every oriented 3-subhypergraph of an
oriented 3-hypergraph is oriented




Comparability 5-hypergraphs.

A comparability 3—hypergraphs is the class of non oriented 3—hypergraphs,
which can be transitively oriented



lransitive oriented hypergraphs.

Observations:

There is a natural correspondence between partial
cyclic orders and transitive oriented 3-hypergraphs



lransitive oriented hypergraphs.

5 L9
Observations:
1 e
(1,72, 23), (71,75, 22), (T5, T3, T2)
(56173337:65) and (371,374,375)
L4

partial cyclic order

There is a natural correspondence between partial
cyclic orders and transitive oriented 3-hypergraphs



lransitive oriented hypergraphs.

A transitive oriented 3-hypergraph, H, with E(H) = (V(gH ))
is called a 3—-hypertournament.



lransitive oriented hypergraphs.

X ={1,2,3...n} 7
1 2

4

Let TT? be the oriented 3—hypergraph with V(T'T?) = [n] and
E(H) = ([g”]), where the orientation of each edge is the one induced
by the cyclic ordering (12 ... n)



Iransitive oriented hypergraphs.

Theorem 0.1 Ewery transitive 3—hypertournament on n vertices
is isomorphic to TT?.

(1991) Peter Alles, Peter Jaroslav Nesetril and Svatopluk Poljak.



Iransitive oriented hypergraphs.

An oriented 3-hypergraph H which is a spanning subhypergraph of 77>
is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3—hypergraph
if and only if H is self transitive.
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Perfection?

Clearly complete graphs satisfy X (&) = 5 |

then for any 3—hypergraph the following equation holds:

@ = o).
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[s it true that for comparability 3-hypergraphs x(H)

No!




Perfection?

[s it true that for comparability 3-hypergraphs y(H)

We exhibit a family of comparability 3—hypergraphs

for which the difference, x(H) — {M(QH )],

is arbitrarily large.
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Perfection?

If H is a cyclic permutation 3-hypergraph is true that xy(H) = [w(H)/2]|?

Theorem: Let H be a cyclic permutation 3—hypergraph,
then y(H) < w(H) — 1. Furthermore, this bound is tight.



Thanks for your attention!

® Koszonom !



