Geometry and Symmetry

 29 June - 3 July 2015, Veszprémo Hungary
uto de Matemáticas UNAM

Exploring the concept of perfection in 3-hypergraphs

Searching for perfection in hypergraphs

Joint work with

Natalia Gacía Colin

Luis Montejano

Some motivation

Given a Partially order set

Some motivation

Given a Partially order set

You may construct an oriented graph.

Some motivation

Given a Partially order set

You may construct an oriented graph.
$\mathrm{a}<\mathrm{b}<\mathrm{c}, \mathrm{a}<\mathrm{b}<\mathrm{d}$

Some motivation

Comparability graphs

Graphs that admit a transitive orientation

Some motivation

Comparability graphs

Graphs that admit a transitive orientation

Perfection in graphs

Perfection in graphs

Known facts:
A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:

Perfection in graphs

Known facts:
A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs
Intersection graphs of intervals

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs
Intersection graphs of intervals
comparability graphs

Perfection in hypergraphs?

Perfection in hypergraphs?

Given H a 3-hypergraph what is $\chi(H)$?

Perfection in hypergraphs?

Given H a 3-hypergraph what is $\chi(H)$?

No monochromatic edges

Perfection in hypergraphs?

Given H a 3-hypergraph what is $\chi(H)$?

Perfection in hypergraphs?

Given H a 3-hypergraph what is $\chi(H)$?

If K_{n}^{3} is the compleat hypergraph $\chi\left(K_{n}^{3}\right)=\lceil n / 2\rceil$

Perfection in hypergraphs?

Clearly $\lceil\omega(H) / 2\rceil \leq \chi(H)$

A 3-hypergraph H is perfect if $\chi(H)=\lceil\omega(H) / 2\rceil$.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

One nice example
Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1}, and let $H=H(\mathcal{F})$ be the 3 -hypergraph with $V(H)=\mathcal{F}$ such that a triple of intervals defines and edge of H if and only if the three intervals are pairwise disjoint.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Proof \quad Suppose $\omega(H)=2 n+1$

Perfection in hypergraphs?

Theorem Let \mathcal{F} be a finite family of closed intervals in the circle \mathbb{S}^{1} and let H be the 3 -hypergraph associated to \mathcal{F}.
Then $\left\lceil\frac{\omega(H)}{2}\right\rceil=\chi(H)$.

Proof \quad Suppose $\omega(H)=2 n+1$

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs
Intersection graphs of intervals
comparability graphs

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs
Intersection graphs of intervals
Comparability graphs

Perfection in graphs

Known facts:

A graph G is perfect if $\chi(H)=\omega(H)$ for each induced subgraph H of G.

Some well known families of graphs:
Bipartite graphs
Intersection graphs of intervals
Comparability graphs

Transitive oriented graphs

Transitive oriented graph

Transitive oriented graphs

Transitive oriented graph

Transitive oriented graphs

Transitive oriented graph

Partial order set

$$
x<y \text { and } y<z
$$

implies $\mathrm{x}<\mathrm{Z}$

Transitive oriented graphs

Transitive oriented graph

Transitive tournament ${ }_{x_{2}}$

Partial order set

$$
x<y \text { and } y<z
$$

Total order implies $\mathrm{x}<\mathrm{z}$

Linear order

Transitive oriented graphs

$$
X:=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}
$$

Transitive oriel ${ }_{x_{2}}$ ted graph

Transitive tournament

Partial order set

$$
x_{1}<x_{2}<x_{3}, x_{5}<x_{2}, x_{4}<x_{3}
$$

Linear order

$$
x_{1}<x_{5}<x_{2}<x_{4}<x_{3}
$$

Partial ciclic orders

Partial ciclic orders

Let X be a set of cardinality n.

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$

$$
\text { cyclic }:(x, y, z) \in T \Rightarrow(y, z, x) \in T
$$

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$
cyclic: $(x, y, z) \in T \Rightarrow(y, z, x) \in T ;$
asymmetric: $(x, y, z) \in T \Rightarrow(z, y, x) \notin T ;$

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$
cyclic: $(x, y, z) \in T \Rightarrow(y, z, x) \in T ;$
asymmetric: $(x, y, z) \in T \Rightarrow(z, y, x) \notin T ;$
and
transitive: $(x, y, z),(x, z, w) \in T \Rightarrow(x, y, w) \in T$.

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$
cyclic: $(x, y, z) \in T \Rightarrow(y, z, x) \in T ;$
asymmetric: $(x, y, z) \in T \Rightarrow(z, y, x) \notin T ;$
and
transitive: $(x, y, z),(x, z, w) \in T \Rightarrow(x, y, w) \in T$.
If in addition T is total
then T is called a complete cyclic order.

Partial ciclic orders

Let X be a set of cardinality n.
A partial cyclic order of X is a ternary relation $T \subset X^{3}$
cyclic: $(x, y, z) \in T \Rightarrow(y, z, x) \in T ;$
asymmetric: $(x, y, z) \in T \Rightarrow(z, y, x) \notin T ;$
and
transitive: $(x, y, z),(x, z, w) \in T \Rightarrow(x, y, w) \in T$.

Alles, P., Nesetril, P.J., Poljak(1991)

Example: Ciclic Permutations

$$
X:=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}
$$

Ciclic order

Oriented hypergraph?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Transitive oriented hypergraph?

Start with a 3-hypergraph
uniform 3-hypergraph

What is an orientation?
what is transitivity?

Transitive oriented hypergraphs.

Observations: Every oriented 3-subhypergraph of an oriented 3-hypergraph is oriented

Comparability 3-hypergraphs.

A comparability 3-hypergraphs is the class of non oriented 3-hypergraphs, which can be transitively oriented

Transitive oriented hypergraphs.

Observations:

There is a natural correspondence between partial cyclic orders and transitive oriented 3-hypergraphs

Transitive oriented hypergraphs.

Observations:

$$
\begin{aligned}
& \quad\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}, x_{5}, x_{2}\right),\left(x_{5}, x_{3}, x_{2}\right) \\
& \left(x_{1}, x_{3}, x_{5}\right) \text { and }\left(x_{1}, x_{4}, x_{5}\right)
\end{aligned}
$$

partial cyclic order

There is a natural correspondence between partial cyclic orders and transitive oriented 3-hypergraphs

Transitive oriented hypergraphs.

A transitive oriented 3-hypergraph, H, with $E(H)=\binom{V(H)}{3}$ is called a 3-hypertournament.

Transitive oriented hypergraphs.

$$
X=\{1,2,3 \ldots n\}
$$

Let $T T_{n}^{3}$ be the oriented 3-hypergraph with $V\left(T T_{n}^{3}\right)=[n]$ and $E(H)=\binom{[n]}{3}$, where the orientation of each edge is the one induced by the cyclic ordering (12 $\ldots n)$

Transitive oriented hypergraphs.

Theorem 0.1 Every transitive 3-hypertournament on n vertices is isomorphic to $T T_{n}^{3}$.
(1991) Peter Alles, Peter Jaroslav Nesetril and Svatopluk Poljak.

Transitive oriented hypergraphs.

An oriented 3-hypergraph H which is a spanning subhypergraph of $T T_{n}^{3}$ is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3-hypergraph if and only if H is self transitive.

Perfection?

Perfection?

Clearly complete graphs satisfy $\quad \chi\left(K_{n}^{3}\right)=\left\lceil\frac{n}{2}\right\rceil$
then for any 3 -hypergraph the following equation holds:

$$
\left\lceil\frac{\omega(H)}{2}\right\rceil \leq \chi(H)
$$

Perfection?

Is it true that for comparability 3-hypergraphs $\chi(H)=\left\lceil\frac{\omega(H)}{2}\right\rceil$?

Perfection?

Is it true that for comparability 3-hypergraphs $\chi(H)=\left\lceil\frac{\omega(H)}{2}\right\rceil$?

No!

Perfection?

Is it true that for comparability 3-hypergraphs $\chi(H)=\left\lceil\frac{\omega(H)}{2}\right\rceil$?

We exhibit a family of comparability 3 -hypergraphs for which the difference, $\chi(H)-\left\lceil\frac{\omega(H)}{2}\right\rceil$, is arbitrarily large.

Perfection?

Perfection?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H)=\lceil w(H) / 2\rceil$?

No.....

Perfection?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H)=\lceil w(H) / 2\rceil$?

No.....

Perfection?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H)=\lceil w(H) / 2\rceil$?

No.....

$$
\omega(H)=4 \text { but } \chi(H)=3
$$

Perfection?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H)=\lceil w(H) / 2\rceil$?

No..... but

Perfection?

If H is a cyclic permutation 3-hypergraph is true that $\chi(H)=\lceil w(H) / 2\rceil$?

No..... but

Theorem: Let H be a cyclic permutation 3 -hypergraph, then $\chi(H) \leq \omega(H)-1$. Furthermore, this bound is tight.

Thanks for your attention!

- Köszönöm!

