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Perfection in graphs

Known facts:

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

x3 x4 x5

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n� 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
Then the monodromy group for P is

Mon(P ) = ⇤r0, . . . , rn�1⌅

(a subgroup of the symmetric group on F(P )).

In 1999 Michael Hartley proved that every abstract polytope P
is as quotient of regular abstract polytope.

When P has rank n = 3, there is a minimal such regular cover R,
that intimately related to the monodromy group of P.

In this work, our goal was to understand the monodromy group
Mn := Mon(Pn) of an ordinary 3-dimensional pyramid.

A flag ⇤ of Pn can be identified with a triangle in the barycentric
subdivision of the boundary of Pn.

⇤0 r0

⇤1 r1

⇤2 r2

If Aut(Pn) is the group of all automorphisms of Pn.
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MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1



Perfection in hypergraphs?

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1

No monochromatic edges



Perfection in hypergraphs?

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1

1

2

3

45

No monochromatic edges



Perfection in hypergraphs?

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1

1

2

3

45

No monochromatic edges

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1



Perfection in hypergraphs?

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

It is true that �([⇤]) = ⇥w([⇤])/2⇤ for any cyclic permutation [⇤]?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

1



Perfection in hypergraphs?

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

If H is a cyclic permutation 3-hypergraph is true that �(H) = ⇥w(H)/2⇤?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

Let F be a finite family of closed intervals in the circle S1,
and let H = H(F) be the 3–hypergraph with V (H) = F
such that a triple of intervals defines and edge of H if and only if the three
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⇥
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Perfection in hypergraphs?
such that a triple of intervals defines and edge of H if and only if the three
intervals are pairwise disjoint.

Theorem Let F be a finite family of closed intervals in the circle S1
and let H be the 3–hypergraph associated to F .
Then

�
�(H)

2

⇥
= �(H).

Suppose ⇥(H) = 2n+ 1

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.

Theorem 0.3 Let H be a cyclic comparability 3–hypergraph such that H is also a cyclic compa-
rability 3–hypergraph. Let Ho and Ho be any transitive oriented 3–hypergraphs whose underlying
3–hypergraphs are H and H respectively. Then the union Ho ⌥ Ho is isomorphic to TT 3

n .

X = {1, 2, 3 . . . n}

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T ⇤ X3

cyclic: (x, y, z) ⇧ T ⌅ (y, z, x) ⇧ T ;

asymmetric: (x, y, z) ⇧ T ⌅ (z, y, x) ⌃⇧ T ;

and

transitive: (x, y, z), (x, z, w) ⇧ T ⌅ (x, y, w) ⇧ T .

If in addition T is total

then T is called a complete cyclic order.

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n � 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
Then the monodromy group for P is

Mon(P ) = �r0, . . . , rn�1 

(a subgroup of the symmetric group on F(P )).

2
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Given H a 3-hypergraph what is �(H)?

If K3
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Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

If H is a cyclic permutation 3-hypergraph is true that �(H) = ⇥w(H)/2⇤?
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is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3
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, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3
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Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

⇥(H) = 5

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

Let F be a finite family of closed intervals in the circle S1,
and let H = H(F) be the 3–hypergraph with V (H) = F
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Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

If H is a cyclic permutation 3-hypergraph is true that �(H) = ⇥w(H)/2⇤?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

⇥(H) = 5

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

Let F be a finite family of closed intervals in the circle S1,
and let H = H(F) be the 3–hypergraph with V (H) = F
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Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

If H is a cyclic permutation 3-hypergraph is true that �(H) = ⇥w(H)/2⇤?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

⇥(H) = 5

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

Let F be a finite family of closed intervals in the circle S1,
and let H = H(F) be the 3–hypergraph with V (H) = F

1



Perfection in hypergraphs?
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

x3 x4 x5

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n� 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
Then the monodromy group for P is

Mon(P ) = ⇤r0, . . . , rn�1⌅

(a subgroup of the symmetric group on F(P )).

In 1999 Michael Hartley proved that every abstract polytope P
is as quotient of regular abstract polytope.

When P has rank n = 3, there is a minimal such regular cover R,
that intimately related to the monodromy group of P.

In this work, our goal was to understand the monodromy group
Mn := Mon(Pn) of an ordinary 3-dimensional pyramid.

A flag ⇤ of Pn can be identified with a triangle in the barycentric
subdivision of the boundary of Pn.

⇤0 r0

⇤1 r1

⇤2 r2

If Aut(Pn) is the group of all automorphisms of Pn.
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When P has rank n = 3, there is a minimal such regular cover R,
that intimately related to the monodromy group of P.

In this work, our goal was to understand the monodromy group
Mn := Mon(Pn) of an ordinary 3-dimensional pyramid.

A flag � of Pn can be identified with a triangle in the barycentric
subdivision of the boundary of Pn.

�0 r0

�1 r1

�2 r2

If Aut(Pn) is the group of all automorphisms of Pn.

Aut((Pn) ⇤ Dn is the dihedral group of order 2n.

When n = 3 Aut(P3) ⇤ S4 is the symmetric group of order 24.

Mn = ⌅r0, r1, r2⇧ is a string C-group.

1
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⇤(K3
n) =

�
n
2

⇥
then for any 3–hypergraph the following equation holds:

⇤
⌅(H)

2

⌅
⇥ ⇤(H). (1)

A comparability 3–hypergraphs is the class of non oriented 3–hypergraphs,
which can be transitively oriented

Is it true that for comparability hypergraphs ⇤(K3
n) =

�
n
2

⇥
?

exhibit a family of comparability 3–hypergraphs for which the di�erence, ⇤(H) �
⇧
�(H)

2

⌃
,

is arbitrarily large.

(u1, 1) (u1, 2) (u2, 1) (u2, 2) (u3, 1) (u3, 2) w

Helly’s Theorem (1913) If F is a finite family of convex sets in Rd

such that every at most (d+ 1)-element subfamily of F has nonempty
intersection, then the whole family F has nonempty intersection.

"Colourful Helly Theorem" (Barany and Lovasz) (1986) Given finite families
F1, . . . ,Fd+1 of convex sets (say of di�erent colours) in Rd satisfying that every time
we chose d+ 1 convex sets of di�erent colour they have nonempty intersection. Then
there is a color i ⌅ [d+ 1] such that all the elements of Fi have nonempty intersection.

"Fractional Helly Theorem"

Weakened version of Helly Theorem

Only � fraction of the d+ 1-tuples of F have nonempty intersection.

What can one hope for under this fractional condition?

F contains a subfamily G of size ⇥|F|, ⇥ depends only on �, d
such that the number of members of the family that have non empty
intersection is bounded.

Assume p ⇤ q ⇤ d+ 1, we will say that the family F has the (p, q)-property
if among every p elements of F there are q with nonempty intersection.

1



Transitive oriented hypergraphs.

Observations:

There is a natural correspondence between partial 
cyclic orders and transitive oriented 3-hypergraphs 
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Then the monodromy group for P is

Mon(P ) = ⌥r0, . . . , rn�1�
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T ⇤ X3

cyclic: (x, y, z) ⇧ T ⌅ (y, z, x) ⇧ T ;

asymmetric: (x, y, z) ⇧ T ⌅ (z, y, x) ⌃⇧ T ;

and

transitive: (x, y, z), (x, z, w) ⇧ T ⌅ (x, y, w) ⇧ T .

If in addition T is total

then T is called a complete cyclic order.

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n� 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
Then the monodromy group for P is

Mon(P ) = ⌥r0, . . . , rn�1�

(a subgroup of the symmetric group on F(P )).
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Observations:

There is a natural correspondence between partial 
cyclic orders and transitive oriented 3-hypergraphs 
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T ⇤ X3

cyclic: (x, y, z) ⇧ T ⌅ (y, z, x) ⇧ T ;

asymmetric: (x, y, z) ⇧ T ⌅ (z, y, x) ⌃⇧ T ;

and

transitive: (x, y, z), (x, z, w) ⇧ T ⌅ (x, y, w) ⇧ T .

If in addition T is total

then T is called a complete cyclic order.

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n� 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
Then the monodromy group for P is

1
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(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

X = {1, 2, 3 . . . n}

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T ⇤ X3

cyclic: (x, y, z) ⇧ T ⌅ (y, z, x) ⇧ T ;

asymmetric: (x, y, z) ⇧ T ⌅ (z, y, x) ⌃⇧ T ;

and

transitive: (x, y, z), (x, z, w) ⇧ T ⌅ (x, y, w) ⇧ T .

If in addition T is total

then T is called a complete cyclic order.

Definition 0.1 Let P be a polytope of rank n > 1.
For 0 ⇥ j ⇥ n� 1, let rj be the bijection on F(P)
which maps each flag ⇤ to the j-adjacent flag ⇤j .
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

X = {1, 2, 3 . . . n}

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T � X3

cyclic: (x, y, z) ⇤ T ⇥ (y, z, x) ⇤ T ;

asymmetric: (x, y, z) ⇤ T ⇥ (z, y, x) ⌅⇤ T ;

and

transitive: (x, y, z), (x, z, w) ⇤ T ⇥ (x, y, w) ⇤ T .

If in addition T is total

then T is called a complete cyclic order.

1
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph if and only if H is self tran-
sitive.

X = {1, 2, 3 . . . n}

x3 x4 x5

x < z

Let X be a set of cardinality n.

A partial cyclic order of X is a ternary relation T � X3

1

of transitive 3-hypergraphs with the extension of the concepts of comparability graphs213

and permutation graphs, which are two important classes of perfect graphs [3].214

The authors will like to thank the support from Centro de Innovación Matemática A.C.215

References216

[1] Peter Alles, Peter Jaroslav Nesetril and Svatopluk Poljak., Extendability, dimen-217

sions, and diagrams of cyclic orders, SIAM Journal on Discrete Mathematics 4218

(1991), 453–471.219

[2] N. Megiddo., Partial and Complete Cyclic Orders Journal of the American Mathe-220

matical Society, 2. Vol. 82, (1976), 274–276.221

[3] Martin Charles Golumbic., Algorithmic Graph Theory and Perfect Graphs, Elsevier,222

1980.223

[4] Vitaezslav Novák., Cyclically ordered sets Czechoslovak Mathematical Journal, 3,224

Vol. 32, (1982).225

[5] Miroslav Novotny and Vitezslav Novak., On determination of a cyclic order Czech.226

Math. Journ, 4, Vol. 33, (1983).227

[6] A. Pnueli and A. Lempel., Transitive orientation of graphs and identification of228

permutation graphs, Canadian Journal of Mathematics, 1, Vol. XXIII, (1971), 160–229

175.230

7

(1991)



Transitive oriented hypergraphs.

Abstract

Key words. Edge chromatic number, Graphicahedron, Abstract Polytopes, Cayley
Graphs.

MSC 2000. Primary: 51M20. Secondary: 05C25, 52B15.

A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .
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n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
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is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph if and only if H is self tran-
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A graph G is perfect if �(H) = ⇥(H) for each induced subgraph H of G.

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

X = {1, 2, 3 . . . n}
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x < z
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such that every at most (d+ 1)-element subfamily of F has nonempty
intersection, then the whole family F has nonempty intersection.

"Colourful Helly Theorem" (Barany and Lovasz) (1986) Given finite families
F1, . . . ,Fd+1 of convex sets (say of di�erent colours) in Rd satisfying that every time
we chose d+ 1 convex sets of di�erent colour they have nonempty intersection. Then
there is a color i ⇥ [d+ 1] such that all the elements of Fi have nonempty intersection.

"Fractional Helly Theorem"

Weakened version of Helly Theorem

Only � fraction of the d+ 1-tuples of F have nonempty intersection.

What can one hope for under this fractional condition?

F contains a subfamily G of size ⇥|F|, ⇥ depends only on �, d
such that the number of members of the family that have non empty
intersection is bounded.

Assume p � q � d+ 1, we will say that the family F has the (p, q)-property
if among every p elements of F there are q with nonempty intersection.

A set of points with the property that every element of F contains
at least one of them is said to pierce F .

The minimum number of points that can pierce F is called the
piercing number of F , and it is denoted by ⇤(F).

Hadwiger and Debrunner asked in 1957 if the (p, q)-condition
implies that ⇤(F) is bounded as a function of d, p, and q.

Theorem 0.1 (Alon and Kleitman (1992))
Let p, q, d be positive integers with p � q � d+ 1.
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Is it true that for comparability 3-hypergraphs �(H) =
l
!(H)

2

m
?

Theorem: Let G be a dense subgroup of R. If S ⇢ Rd is a G-module then h(S)  2d.

Theorem: Let L1, . . . , Lk be (possibly translated) sublattices of Zd.
Then the set S = Zd \ (L1 [ · · · [ Lk) has Helly number h(S)  Ck2d

for some constant Ck depending only on k.

Lemma: Assume S ⇢ Rd is discrete, then h(S) is equal to the following two numbers:

1. The supremum of the number of faces of an S-face-polytope.

2. The supremum of the number of vertices of an S-vertex-polytope.

R2

Teorema Dado un ✏ > 0, existe �(✏) > 0 tal que si G es una gráfica semialgebráica con n

vértices y mas de (1 � 1
d + ✏)n

2

2 aristas entonces G tiene una (d + 1)-partita completa como
subgráfica donde cada una de las particiones tiene casi el mismo tamaño �(✏)n (una gráfica de
Turán).

Solo una ↵ fracción de las d+ 1-tupletas de F tienen intersección no vacia.

Teorema (2014) (I. Barany, F. Fodor, A. Martinez, L. Montejano, O, A. Pór )
Dado F una familia de cajas en Rd y ↵ 2 (1� 1/d, 1]. Existe un número real �(↵) > 0 tal que
si existen ↵n2

2 parejas de cajas intersectantes en F , entonces F tiene una subfamilia de tamaño
�n.

Teorema: Dado ✏ > 0, existe un �(✏) > 0 tal que si G es una gráfica semialgebráica con n

vértices y mas de (1� 1
d + ✏)n

2

2 aristas, AQUI VOY!!!

F contiene una subfamilia H de tamaño �|F| (� depende de ↵ y d)
donde todos los miembros de ella tienen intersección no vacía.

Sea F una familia de cajas en Rd y sea GF su gráfica de intersección

Definition: For a nonempty family T of sets, the Helly number h = h(T ) 2 N of T is defined
as the smallest number satisfying the following.

8i1, . . . , ih 2 [m] : Fi1 \ · · · \ Fih 6= ; =) F1 \ · · · \ Fm 6= ; (1)

1
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n
2

⇥
then for any 3–hypergraph the following equation holds:

⇤
⌅(H)

2

⌅
⇥ ⇤(H). (1)

A comparability 3–hypergraphs is the class of non oriented 3–hypergraphs,
which can be transitively oriented

Is it true that for comparability hypergraphs ⇤(K3
n) =

�
n
2

⇥
?

We exhibit a family of comparability 3–hypergraphs
for which the di�erence, ⇤(H)�

⇧
�(H)

2

⌃
,

is arbitrarily large.
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Helly’s Theorem (1913) If F is a finite family of convex sets in Rd

such that every at most (d+ 1)-element subfamily of F has nonempty
intersection, then the whole family F has nonempty intersection.

"Colourful Helly Theorem" (Barany and Lovasz) (1986) Given finite families
F1, . . . ,Fd+1 of convex sets (say of di�erent colours) in Rd satisfying that every time
we chose d+ 1 convex sets of di�erent colour they have nonempty intersection. Then
there is a color i ⌅ [d+ 1] such that all the elements of Fi have nonempty intersection.

"Fractional Helly Theorem"

Weakened version of Helly Theorem

Only � fraction of the d+ 1-tuples of F have nonempty intersection.

What can one hope for under this fractional condition?

F contains a subfamily G of size ⇥|F|, ⇥ depends only on �, d
such that the number of members of the family that have non empty
intersection is bounded.

Assume p ⇤ q ⇤ d+ 1, we will say that the family F has the (p, q)-property
if among every p elements of F there are q with nonempty intersection.
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Helly’s Theorem (1913) If F is a finite family of convex sets in Rd

such that every at most (d+ 1)-element subfamily of F has nonempty
intersection, then the whole family F has nonempty intersection.

"Colourful Helly Theorem" (Barany and Lovasz) (1986) Given finite families
F1, . . . ,Fd+1 of convex sets (say of di�erent colours) in Rd satisfying that every time
we chose d+ 1 convex sets of di�erent colour they have nonempty intersection. Then
there is a color i ⇤ [d+ 1] such that all the elements of Fi have nonempty intersection.

"Fractional Helly Theorem"

Weakened version of Helly Theorem

Only � fraction of the d+ 1-tuples of F have nonempty intersection.

What can one hope for under this fractional condition?

F contains a subfamily G of size ⇥|F|, ⇥ depends only on �, d
such that the number of members of the family that have non empty
intersection is bounded.

Assume p ⇥ q ⇥ d+ 1, we will say that the family F has the (p, q)-property
if among every p elements of F there are q with nonempty intersection.

A set of points with the property that every element of F contains
at least one of them is said to pierce F .

The minimum number of points that can pierce F is called the
piercing number of F , and it is denoted by ⇤(F).

Hadwiger and Debrunner asked in 1957 if the (p, q)-condition
implies that ⇤(F) is bounded as a function of d, p, and q.

Theorem 0.1 (Alon and Kleitman (1992))
Let p, q, d be positive integers with p ⇥ q ⇥ d+ 1.
Then there exists a number m(p, q, d) such that ⇤(F) � m(p, q, d)
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The minimum number of points that can pierce F is called the
piercing number of F , and it is denoted by ⇤(F).

Hadwiger and Debrunner asked in 1957 if the (p, q)-condition
implies that ⇤(F) is bounded as a function of d, p, and q.

Theorem 0.1 (Alon and Kleitman (1992))
Let p, q, d be positive integers with p ⇥ q ⇥ d + 1.
Then there exists a number m(p, q, d) such that ⇤(F) � m(p, q, d)
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Given H a 3-hypergraph what is �(H)?

If K3
n is the compleat hypergraph �(K3

n) = ⇥n/2⇤

Clearly ⇥⇥(H)/2⇤ � �(H)

A 3-hypergraph H is perfect if �(H) = ⇥⇥(H)/2⇤.

If H is a cyclic permutation 3-hypergraph is true that �(H) = ⇥w(H)/2⇤?

X := {x1, x2, x3, x4, x5}

x1 < x5 < x2 < x4 < x3

x1 < x2 < x3, x5 < x2, x4 < x3

(x1, x2, x3), (x1, x5, x2), (x5, x3, x2)
(x1, x3, x5) and (x1, x4, x5)

A transitive oriented 3–hypergraph, H, with E(H) =
�V (H)

3

⇥

is called a 3–hypertournament.

Let TT 3
n be the oriented 3–hypergraph with V (TT 3

n) = [n] and
E(H) =

�[n]
3

⇥
, where the orientation of each edge is the one induced

by the cyclic ordering (1 2 . . . n)

Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.

A 3–hypergraph, H, is called a cyclic comparability hypergraph if it admits a transitive
orientation.
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Theorem 0.1 Every transitive 3–hypertournament on n vertices
is isomorphic to TT 3

n .

Let H being a spanning oriented subhypergraph of TT 3
n , we define its complement as the

oriented 3–hypergraph H with V (H) = V (TT 3
n) and O(H) = O(TT 3

n) \O(H).

⇥(H) = 4 but �(H) = 3

An oriented 3–hypergraph H which is a spanning subhypergraph of TT 3
n

is called self-transitive if it is transitive and its complement is also transitive.

Conjecture: If H is a cyclic permutation 3-hypergraph
then �(H) = ⇥⇥(H) + 1/2⇤

Theorem 0.2 H is an oriented cyclic permutation 3–hypergraph
if and only if H is self transitive.
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⇤(K3
n) =

�
n
2

⇥
then for any 3–hypergraph the following equation holds:

⇤
⌅(H)

2

⌅
⇥ ⇤(H). (1)

A comparability 3–hypergraphs is the class of non oriented 3–hypergraphs,
which can be transitively oriented

Is it true that for comparability hypergraphs ⇤(K3
n) =

�
n
2

⇥
?

We exhibit a family of comparability 3–hypergraphs
for which the di�erence, ⇤(H)�

⇧
�(H)

2

⌃
,

is arbitrarily large.

Theorem: Let H be a cyclic permutation 3–hypergraph,
then ⇤(H) ⇥ ⌅(H)� 1. Furthermore, this bound is tight.

(u1, 1) (u1, 2) (u2, 1) (u2, 2) (u3, 1) (u3, 2) w

Helly’s Theorem (1913) If F is a finite family of convex sets in Rd

such that every at most (d+ 1)-element subfamily of F has nonempty
intersection, then the whole family F has nonempty intersection.

"Colourful Helly Theorem" (Barany and Lovasz) (1986) Given finite families
F1, . . . ,Fd+1 of convex sets (say of di�erent colours) in Rd satisfying that every time
we chose d+ 1 convex sets of di�erent colour they have nonempty intersection. Then
there is a color i ⇤ [d+ 1] such that all the elements of Fi have nonempty intersection.

"Fractional Helly Theorem"

Weakened version of Helly Theorem

Only � fraction of the d+ 1-tuples of F have nonempty intersection.

What can one hope for under this fractional condition?

F contains a subfamily G of size ⇥|F|, ⇥ depends only on �, d
such that the number of members of the family that have non empty
intersection is bounded.
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