On homothetic copies of a convex body

joint works of subsets of:
Zsolt Lángi, János Pach, Konrad Swanepoel and
Márton Naszódi

École polytechnique fédérale de Lausanne (Lausanne)

ÉCOLE POLYTECHNIQUE
fédérale de lausanne

Eötvös University
(Budapest)

Bezdek-Pach Conjecture

K - a convex body in \mathbb{R}^{d}.
Translate: $t+K$, where $t \in \mathbb{R}^{d}$. Homothet: $t+\lambda K$, where $t \in \mathbb{R}^{d}$ and $\lambda>0$.

Klee's question (Going Back to Erdős), '60: Maximum number of pairwise touching translates of K ?
Danzer and Grünbaum, '62:
2^{d}, and equality exactly for parallelotopes.
Bezdek-Pach Conjecture, '88:
Maximum number of pairwise touching homothets of K is also $\leq 2^{d}$.
N, 'Ob:
Maximum number of pairwise touching homothets of K is $<2^{d+1}$.
Zs. Lángi, N, 'O9: If $K=-K$ then the maximum number of pairwise touching homothets of K is $<\frac{3}{2} 2^{d}$.

N, 'Ob:
Maximum number of pairwise touching homothets of K is $<2^{d+1}$. Idea of the proof:
(1) Veronese-like mapping:

For each $t_{i}+\lambda_{i} K$, consider the point $\left(t_{i}, \lambda_{i}\right)$ in \mathbb{R}^{d+1}.
(2) Use the result of Danzer and Grünbaum in \mathbb{R}^{d+1}.

N, 'Ob:
Maximum number of pairwise touching homothets of K is $<2^{d+1}$. Idea of the proof:
(1) Veronese-like mapping: For each $t_{i}+\lambda_{i} K$, consider the point $\left(t_{i}, \lambda_{i}\right)$ in \mathbb{R}^{d+1}.
(2) Use the result of Danzer and Grünbaum in \mathbb{R}^{d+1}.

Zs. Lángi, N, 'O9: If $K=-K$ then the maximum number of pairwise touching homothets of K is $<\frac{3}{2} 2^{d}$. Idea of the proof: The same mapping and something more...

Bezdek-Pach conjecture:
Maximum number of pairwise touching homothets of K is also 2^{d}.
$Z \mathrm{~s}$. Lángi, N, 'O9: If $K=-K$ then the
maximum number of pairwise touching homothets of K is $<\frac{3}{2} 2^{d}$.

Bezdek-Pach conjecture:
Maximum number of pairwise touching homothets of K is also 2^{d}.
Zs. Lángi, N, 'O9: If $K=-K$ then the
maximum number of pairwise touching homothets of K is $<\frac{3}{2} 2^{d}$.
One-sided Hadwiger-number
$H^{+}(K)$: the maximum number of pairwise non-overlapping translates of K that touch K and whose translation vectors are in a closed half-space (with \circ at boundary).

Bezdek, Brass, 'O3
$H^{+}(K) \leq 2 \cdot 3^{d-1}-1$, and equality exactly for parallelotopes.

Bezdek-Pach conjecture:
Maximum number of pairwise touching homothets of K is also 2^{d}.
Zs. Lángi, N, 'O9: If $K=-K$ then the
maximum number of pairwise touching homothets of K is $<\frac{3}{2} 2^{d}$.

An open one-sided Hadwiger-number-like quantity
$H_{\infty}^{+}(K)$: the maximum number of pairwise non-overlapping translates of K that contain o and whose translation vectors are in an open half-space (with \circ at boundary).

Zs. Lángi, N, 'O9

For $\hat{K}=-\hat{K} \subset \mathbb{R}^{d+1}$ we have $\bar{H}_{\infty}^{+}(\hat{K}) \leq 3 \cdot 2^{d-1}$ for the CLOSED one-sided Hadwiger-number-like quantity, and equality exactly for parallelotopes.

Bezdek-Pach Conjecture

An open one-sided Hadwiger-number-like quantity
$H_{\infty}^{+}(K)$: the maximum number of pairwise non-overlapping translates of K that contain o and whose translation vectors are in an open half-space (with o at boundary).

Zs. Lángi, N, 'O9

The following statements are equivalent.
(1) There is a $K=-K \subset \mathbb{R}^{d}$ with n pairwise touching homothets.
(2) There is a $\hat{K}=-\hat{K} \subset \mathbb{R}^{d+1}$ with $H_{\infty}^{+}(\hat{K}) \geq n$.

Thus, the problem is hard!

A Question By Füredi and Loeb '94

$K=-K$ convex body in $\mathbb{R}^{d}(d>2)$. Is it true that the number of pairwise intersecting homothets of K which do not contain each other's centers is $\leq 2^{d}$?
Note: for the Euclidean disk in \mathbb{R}^{2} it is ≥ 8.
Talata 'O5: False. Even for translates, it can be $>\frac{16}{35} \sqrt{7}{ }^{d}$.

N, K. Swanepoel, J. Pach 'IS+:
$K=-K$ convex body in \mathbb{R}^{d}. Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e 3^{d}(d+2) \ln d$.

For translates: $\leq 3^{d}$.

A Question By Füredi and Loeb '94

$K=-K$ convex body in $\mathbb{R}^{d}(d>2)$. Is it true that the number of pairwise intersecting homothets of K which do not contain each other's centers is $\leq 2^{d}$?
Note: for the Euclidean disk in \mathbb{R}^{2} it is ≥ 8.
Talata 'O5: False. Even for translates, it can be $>\frac{16}{35} \sqrt{7}{ }^{d}$.

N, K. Swanepoel, J. Pach 'IS+:
$K=-K$ convex body in \mathbb{R}^{d}. Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e 3^{d}(d+2) \ln d$.

For translates: $\leq 3^{d}$.
Puzzle: What is the maximum number of translates of a triangle on the plane that all contain the origin and none contains the centroid of the other in its interior?

N, K. Swanepoel, J. Pach 'IS+:
$K=-K$ convex body in \mathbb{R}^{d}. Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e 3^{d}(d+2) \ln d$.

Idea of the proof (follows Füredi and Loeb)
The bound for translates is standard: use the isodiametric inequality (follows straight from the Brunn-Minkowski inequality).

For homothets: Apply a "logarithmic cut" of the homothety factors (ie., group them in intervals of the form $\left.\left[(1+\varepsilon)^{\ell},(1+\varepsilon)^{\ell+1}\right]\right)$, and deal with the small ones as with translates.

Finally, deal with the large homothets by centrally projecting the centers onto the unit sphere. This step requires the use of a technical lemma (Bow and arrow inequality).

Lower Bound - Symmetric case

Bourgain [in Füredi-Loeb paper]

For any number $s<\sqrt{2}$, there exists an $\varepsilon(s)>0$, such that, in any normed space of dimension d, there is a $(1+\varepsilon(s))^{d}$ element point set on the unit sphere with the property that the distances between distinct points are $\geq s$.

Thus, for any o-symmetric K, the number of pairwise intersecting translates not containing each other's center is exponentially large in d.

Lower Bound - Symmetric case

Bourgain [in Füredi-Loeb paper]

For any number $s<\sqrt{2}$, there exists an $\varepsilon(s)>0$, such that, in any normed space of dimension d, there is a $(1+\varepsilon(s))^{d}$ element point set on the unit sphere with the property that the distances between distinct points are $\geq s$.

Thus, for any o-symmetric K, the number of pairwise intersecting translates not containing each other's center is exponentially large in d.

Main tool:

Milman's Quotient of Subspace Theorem, '85:

$1 \leq k<d-1, \lambda=k /(d-1), K=-K$ a convex body in \mathbb{R}^{d}. Then there are linear subspaces $E \leq F \leq \mathbb{R}^{d}$, and an ellipsoid \mathcal{E} in E such that $\operatorname{dim} E=k$ and

$$
\mathcal{E} \subseteq P_{F}(K) \cap E \subseteq c(\lambda) \mathcal{E}
$$

where $c(\lambda)$ depends only on λ.

Lower Bound - Non-symmetric case

Non-symmetric Quotient of Subspace Theorem [Milman-Pajor,'OO]:
$1 \leq k<d-1, \lambda=k /(d-1), K$ a convex body in \mathbb{R}^{d} with the centroid at the origin. Then there are linear subspaces $E \leq F \leq \mathbb{R}^{d}$, and an ellipsoid \mathcal{E} in E such that $\operatorname{dim} E=k$ and

$$
\mathcal{E} \subseteq P_{F}(K) \cap E \subseteq c(\lambda) \mathcal{E}
$$

where $c(\lambda)$ depends only on λ.

Lower Bound - Non-symmetric case

Non-symmetric Quotient of Subspace Theorem [Milman-Pajor,'OO]:
$1 \leq k<d-1, \lambda=k /(d-1), K$ a convex body in \mathbb{R}^{d} with the centroid at the origin. Then there are linear subspaces $E \leq F \leq \mathbb{R}^{d}$, and an ellipsoid \mathcal{E} in E such that $\operatorname{dim} E=k$ and

$$
\mathcal{E} \subseteq P_{F}(K) \cap E \subseteq c(\lambda) \mathcal{E}
$$

where $c(\lambda)$ depends only on λ.

Centroid of Projection LeMma, [N, Swanepoel, Pach, ' $15+1$
K a convex body in \mathbb{R}^{d}. Then there is a $(d-1)$-dimensional linear subspace $H \leq \mathbb{R}^{d}$ such that the centroid of $P_{H}(K)$ is the origin.

Sphere of Influence Graphs

$k \in \mathbb{Z}^{+},\left\{c_{i}: i=1, \ldots, m\right\}$ a set of points in \mathbb{R}^{d} with norm $\|\cdot\|$.
$r_{i}^{(k)}$: the smallest r such that $\left\{j \in \mathbb{Z}^{+}: j \neq i,\left\|c_{i}-c_{j}\right\| \leq r\right\}$ has at least k elements.
The k-th closed sphere-of-influence graph:

$$
V=\left\{c_{i}: i=1, \ldots, m\right\}
$$

$$
\left\{c_{i}, c_{j}\right\} \text { an edge if } B\left(c_{i}, r_{i}^{(k)}\right) \cap B\left(c_{j}, r_{j}^{(k)}\right) \neq \emptyset
$$

Sphere of Influence Graphs

$k \in \mathbb{Z}^{+},\left\{c_{i}: i=1, \ldots, m\right\}$ a set of points in \mathbb{R}^{d} with norm $\|\cdot\|$.
$r_{i}^{(k)}$: the smallest r such that $\left\{j \in \mathbb{Z}^{+}: j \neq i,\left\|c_{i}-c_{j}\right\| \leq r\right\}$ has at least k elements.
The k-th closed sphere-of-influence graph:

$$
V=\left\{c_{i}: i=1, \ldots, m\right\}
$$

$$
\left\{c_{i}, c_{j}\right\} \text { an edge if } B\left(c_{i}, r_{i}^{(k)}\right) \cap B\left(c_{j}, r_{j}^{(k)}\right) \neq \emptyset
$$

Applications: Image processing, pattern analysis.

Sphere of Influence Graphs

$k \in \mathbb{Z}^{+},\left\{c_{i}: i=1, \ldots, m\right\}$ a set of points in \mathbb{R}^{d} with norm $\|\cdot\|$.
$r_{i}^{(k)}$: the smallest r such that $\left\{j \in \mathbb{Z}^{+}: j \neq i,\left\|c_{i}-c_{j}\right\| \leq r\right\}$ has at least k elements.
The k-th closed sphere-of-influence graph:

$$
\begin{aligned}
& V=\left\{c_{i}: i=1, \ldots, m\right\} \\
& \left\{c_{i}, c_{j}\right\} \text { an edge if } B\left(c_{i}, r_{i}^{(k)}\right) \cap B\left(c_{j}, r_{j}^{(k)}\right) \neq \emptyset
\end{aligned}
$$

Applications: Image processing, pattern analysis.

Guibas, Pach, Sharir, '91:

Maximum number of edges is $\leq n k\left(c^{d}-1\right)$, for some constant $c>1$.
N, K. Swanepoel, J. Pach 'IS+:
Maximum number of edges is $\leq n k\left(5^{d}-1\right)$.

Happy 12O, Egon and Károly!

