On homothetic copies of a convex body

joint works of subsets of: Zsolt Lángi, János Pach, Konrad Swanepoel and Márton Naszódi

École polytechnique fédérale de Lausanne (Lausanne)

Eötvös University (Budapest)

Bezdek-Pach Conjecture

K — a convex body in \mathbb{R}^d . Translate: t + K, where $t \in \mathbb{R}^d$. Homothet: $t + \lambda K$, where $t \in \mathbb{R}^d$ and $\lambda > 0$.

Klee's question (Going Back to Erdős), '60:

Maximum number of pairwise touching translates of K? Danzer and GrünBaum, '62:

 2^d , and equality exactly for parallelotopes.

Bezdek-Pach Conjecture, '88:

Maximum number of pairwise touching homothets of K is also $\leq 2^d$. N, 'OL:

Maximum number of pairwise touching homothets of K is $< 2^{d+1}$. Z.s. Lángi, N, 'O9: If K = -K then the maximum number of pairwise touching homothets of K is $< \frac{3}{2}2^d$.

N, '06:

Maximum number of pairwise touching homothets of K is $< 2^{d+1}$.

Idea of the proof:

- Veronese–like mapping: For each $t_i + \lambda_i K$, consider the point (t_i, λ_i) in \mathbb{R}^{d+1} .
- **2** Use the result of Danzer and Grünbaum in \mathbb{R}^{d+1} .

N, '06:

Maximum number of pairwise touching homothets of K is $< 2^{d+1}$.

Idea of the proof:

- Veronese–like mapping: For each $t_i + \lambda_i K$, consider the point (t_i, λ_i) in \mathbb{R}^{d+1} .
- **2** Use the result of Danzer and Grünbaum in \mathbb{R}^{d+1} .
- Z.s. Lángi, N, 'O9: If K = -K then the maximum number of pairwise touching homothets of K is $<\frac{3}{2}2^d$.

Idea of the proof: The same mapping and something more...

Bezdek-Pach conjecture:

Maximum number of pairwise touching homothets of K is also 2^d . Z.s. Lángi, N, 'O9: If K = -K then the

maximum number of pairwise touching homothets of K is $<\frac{3}{2}2^d$.

Bezdek-Pach conjecture:

Maximum number of pairwise touching homothets of K is also 2^d . Z.s. Lángi, N, 'O9: If K = -K then the

maximum number of pairwise touching homothets of K is $<\frac{3}{2}2^d$.

One-sided Hadwiger-number

 $H^+(K)$: the maximum number of pairwise non-overlapping translates of K that touch K and whose translation vectors are in a closed half-space (with o at boundary).

Bezdek, Brass, 'O3 $H^+(K) \le 2 \cdot 3^{d-1} - 1$, and equality exactly for parallelotopes.

Bezdek-Pach conjecture:

Maximum number of pairwise touching homothets of K is also 2^d . Z.s. Lángi, N, 'O9: If K = -K then the maximum number of pairwise touching homothets of K is $<\frac{3}{2}2^d$.

An open one-sided Hadwiger-number-like quantity

 $H^+_{\infty}(K)$: the maximum number of pairwise non-overlapping translates of K that contain o and whose translation vectors are in an open half-space (with o at boundary).

Zs. Lángi, N, '09

For $\hat{K} = -\hat{K} \subset \mathbb{R}^{d+1}$ we have $\bar{H}^+_{\infty}(\hat{K}) \leq 3 \cdot 2^{d-1}$ for the CLOSED one-sided Hadwiger-number-like quantity, and equality exactly for parallelotopes.

Bezdek-Pach Conjecture

An open one-sided Hadwiger-number-like quantity

 $H^+_{\infty}(K)$: the maximum number of pairwise non-overlapping translates of K that contain o and whose translation vectors are in an open half-space (with o at boundary).

Zs. Lángi, N, '09

The following statements are equivalent.

- **①** There is a $K = -K \subset \mathbb{R}^d$ with *n* pairwise touching homothets.
- 2 There is a $\hat{K} = -\hat{K} \subset \mathbb{R}^{d+1}$ with $H^+_{\infty}(\hat{K}) \ge n$.

Thus, the problem is hard!

A Question by Füredi and LOEB '94

K = -K convex body in \mathbb{R}^d (d > 2). Is it true that the number of pairwise intersecting homothets of K which do not contain each other's centers is $\leq 2^d$? Note: for the Euclidean disk in \mathbb{R}^2 it is ≥ 8 .

Talata 'O5: False. Even for translates, it can be $> \frac{16}{35}\sqrt{7}^d$.

N, K. Swanepoel, J. Pach '15+:

K = -K convex body in \mathbb{R}^d . Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e3^d(d+2) \ln d$.

For translates: $\leq 3^d$.

A Question by Füredi and LOEB '94

K = -K convex body in \mathbb{R}^d (d > 2). Is it true that the number of pairwise intersecting homothets of K which do not contain each other's centers is $\leq 2^d$? Note: for the Euclidean disk in \mathbb{R}^2 it is ≥ 8 .

Talata 'O5: False. Even for translates, it can be $> \frac{16}{35}\sqrt{7}^d$.

N, K. Swanepoel, J. Pach '15+:

K = -K convex body in \mathbb{R}^d . Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e3^d(d+2) \ln d$.

For translates: $\leq 3^d$.

Puzzle: What is the maximum number of translates of a triangle on the plane that all contain the origin and none contains the centroid of the other in its interior?

N, K. Swanepoel, J. Pach '15+:

K = -K convex body in \mathbb{R}^d . Then the number of pairwise intersecting homothets of K which do not contain each other's centers in their interiors is $\leq e3^d(d+2) \ln d$.

Idea of the proof (follows Füredi and LOEB) The bound for translates is standard: use the isodiametric inequality (follows straight from the Brunn-Minkowski inequality).

For homothets: Apply a "logarithmic cut" of the homothety factors (ie., group them in intervals of the form $[(1 + \varepsilon)^{\ell}, (1 + \varepsilon)^{\ell+1}])$, and deal with the small ones as with translates.

Finally, deal with the large homothets by centrally projecting the centers onto the unit sphere. This step requires the use of a technical lemma (Bow and arrow inequality).

Lower Bound — Symmetric case Bourgain [in Füredi–LOEB paper] For any number $s < \sqrt{2}$, there exists an $\varepsilon(s) > 0$, such that, in any normed space of dimension d, there is a $(1 + \varepsilon(s))^d$ element point set on the unit sphere with the property that the distances between distinct points are > s.

Thus, for any o-symmetric K, the number of pairwise intersecting translates not containing each other's center is exponentially large in d.

Lower Bound - Symmetric case

Bourgain [in Füredi-LOEB paper]

For any number $s < \sqrt{2}$, there exists an $\varepsilon(s) > 0$, such that, in any normed space of dimension d, there is a $(1 + \varepsilon(s))^d$ element point set on the unit sphere with the property that the distances between distinct points are $\geq s$.

Thus, for any o-symmetric K, the number of pairwise intersecting translates not containing each other's center is exponentially large in d.

Main tool:

Milman's Quotient of Subspace Theorem, '85:

 $1 \leq k < d-1$, $\lambda = k/(d-1)$, K = -K a convex body in \mathbb{R}^d . Then there are linear subspaces $E \leq F \leq \mathbb{R}^d$, and an ellipsoid \mathcal{E} in E such that dim E = k and

$$\mathcal{E} \subseteq P_F(K) \cap E \subseteq c(\lambda)\mathcal{E},$$

where $c(\lambda)$ depends only on λ .

Lower Bound - Non-symmetric case

Non-symmetric Quotient of Subspace Theorem [Milman-Pajor,'00]:

 $1 \le k < d-1$, $\lambda = k/(d-1)$, K a convex body in \mathbb{R}^d with the centroid at the origin. Then there are linear subspaces $E \le F \le \mathbb{R}^d$, and an ellipsoid \mathcal{E} in E such that dim E = k and

$$\mathcal{E} \subseteq P_F(K) \cap E \subseteq c(\lambda)\mathcal{E},$$

where $c(\lambda)$ depends only on λ .

Lower Bound - Non-symmetric case

Non-symmetric Quotient of Subspace Theorem [Milman-Pajor,'00]:

 $1 \le k < d-1$, $\lambda = k/(d-1)$, K a convex body in \mathbb{R}^d with the centroid at the origin. Then there are linear subspaces $E \le F \le \mathbb{R}^d$, and an ellipsoid \mathcal{E} in E such that dim E = k and

 $\mathcal{E} \subseteq P_F(K) \cap E \subseteq c(\lambda)\mathcal{E},$

where $c(\lambda)$ depends only on λ .

Centroid of Projection Lemma, [N, Swanepoel, Pach, '15+]

K a convex body in \mathbb{R}^d . Then there is a (d-1)-dimensional linear subspace $H \leq \mathbb{R}^d$ such that the centroid of $P_H(K)$ is the origin.

Sphere of Influence Graphs

 $k \in \mathbb{Z}^+$, $\{c_i : i = 1, ..., m\}$ a set of points in \mathbb{R}^d with norm $\|\cdot\|$. $r_i^{(k)}$: the smallest r such that $\{j \in \mathbb{Z}^+ : j \neq i, \|c_i - c_j\| \le r\}$ has at least k elements.

The *k*-th closed sphere-of-influence graph:

 $V = \{c_i : i = 1, \dots, m\}$ $\{c_i, c_j\} \text{ an edge if } B(c_i, r_i^{(k)}) \cap B(c_j, r_j^{(k)}) \neq \emptyset.$

Sphere of Influence Graphs

 $k \in \mathbb{Z}^+$, $\{c_i : i = 1, ..., m\}$ a set of points in \mathbb{R}^d with norm $\|\cdot\|$. $r_i^{(k)}$: the smallest r such that $\{j \in \mathbb{Z}^+ : j \neq i, \|c_i - c_j\| \le r\}$ has at least k elements.

The *k*-th closed sphere-of-influence graph:

 $V = \{c_i : i = 1, \dots, m\}$ $\{c_i, c_j\} \text{ an edge if } B(c_i, r_i^{(k)}) \cap B(c_j, r_j^{(k)}) \neq \emptyset.$

Applications: Image processing, pattern analysis.

Sphere of Influence Graphs

 $k \in \mathbb{Z}^+$, $\{c_i : i = 1, ..., m\}$ a set of points in \mathbb{R}^d with norm $\|\cdot\|$. $r_i^{(k)}$: the smallest r such that $\{j \in \mathbb{Z}^+ : j \neq i, \|c_i - c_j\| \le r\}$ has at least k elements.

The *k*-th closed sphere-of-influence graph:

 $V = \{c_i : i = 1, \dots, m\}$ $\{c_i, c_j\} \text{ an edge if } B(c_i, r_i^{(k)}) \cap B(c_j, r_j^{(k)}) \neq \emptyset.$

Applications: Image processing, pattern analysis.

Guibas, Pach, Sharir, '91:

Maximum number of edges is $\leq nk(c^d - 1)$, for some constant c > 1.

N, K. Swanepoel, J. Pach '15+:

Maximum number of edges is $\leq nk(5^d - 1)$.

Happy 120, Egon and Károly!

