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Brouwer fixed point theorem (1912)

Brouwer fixed point theorem.
Any continuous map f : Bn → Bn must have a fixed point.

Here Bn denote an n-ball.
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Sperner lemma (1928)

Theorem

(Sperner lemma) Every Sperner labelling of a triangulation of a
d-dimensional simplex contains a cell labelled with a complete set
of labels: {1, 2, . . . , d + 1}.
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Sperner lemma
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Figure: A 2-dimensional illustration of Sperner’s lemma
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Degree and Sperner’s lemma

Theorem (M., 2014)

Let T be a triangulation of a PL orientable d-dimensional manifold
M with boundary. Let L : V (T )→ {1, 2, . . . , d + 1} be any
labelling. Then T contains at least | deg(fL, ∂T )| fully labelled
d-simplices, where fL : T → ∆d and ∆d is a d-dimensional simplex
with vertices 1, 2, . . . , d + 1.

For Sperner’s labelling deg(L, ∂T ) := deg(fL, ∂T ) = ±1.
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Figure: deg(L, ∂T ) = 3. There are three fully labelled triangles.
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A generalization of the De Loera - Petersen - Su theorem

Theorem (M., 2014)

Let P be a convex polytope in Rd with n vertices. Let T be a
triangulation of a compact oriented PL–manifold M of dimension d
with boundary. Let L : V (T )→ {1, 2, . . . , n} be a labelling such
that fL,P(∂M) ⊆ ∂P. Then T contains at least
(n − d)| deg(L, ∂T )| fully labelled d-simplices.



Sperner type lemmas

A generalization of the De Loera - Petersen - Su theorem
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Figure: Octagon with two square holes. Here n = 4, deg(L, ∂T )| = 4 and
there are eight fully labelled triangles
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Sperner type lemma for quadrangulations

Denote by Cd the d–dimensional cube.

Theorem (M., 2015)

Let Q be a quadrangulation of an oriented d-dimensional manifold
M. Suppose L : V (Q)→ V (Cd ) be a labelling such that
fL(∂Q) ⊆ ∂Cd . Then Q contains at least | deg(L, ∂Q)| balanced
labelled cells.
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Sperner type lemma for quadrangulations

Fig.: Sperner’s labelling of Π2(4, 3). One edge is colored with (1, 3).
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Sperner type lemma for quadrangulations

Fig.: Since deg(L, ∂Q) = 2, there are two balanced labelled cells.
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The Borsuk-Ulam theorem (1933)

The Borsuk - Ulam theorem (Borsuk, 1933). Four equivalent
statements:
(a) For every continuous mapping f : Sn → Rn there exists a point
x ∈ Sn with f (x) = f (−x).
(b) For every antipodal (i.e. f (−x) = −f (x)) continuous mapping
f : Sn → Rn there exists a point x ∈ Sn with f (x) = 0.
(c) There is no antipodal continuous mapping f : Sn → Sn−1.
(d) There is no continuous mapping f : Bn → Sn−1 that is
antipodal on the boundary.
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Tucker’s lemma (1945)

Theorem (Tucker)

Let Λ be a triangulation of the ball Bd that is antipodally
symmetric on the boundary. Let

L : V (Λ)→ {+1,−1,+2,−2, . . . ,+d ,−d}

be a labelling of the vertices of Λ that satisfies L(−v) = −L(v) for
every vertex v on the boundary Bd . Then there exists an edge in Λ
that is “complementary”: i.e., its two vertices are labelled by
opposite numbers.
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Tucker lemma
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Figure: Since deg(L, ∂T ) = 3, there are three complementary edges.



Sperner type lemmas

Tucker lemma for spheres

Theorem

Let Λ be an antipodal triangulation of Sd . Let

L : V (Λ)→ {+1,−1,+2,−2, . . . ,+d ,−d}

be an antipodal labelling of the vertices of Λ that satisfies
L(−v) = −L(v) for all vertices. Then Λ contains a complimentary
edge.
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Shashkin lemma (1996)

Theorem

Let T be a triangulation of a planar polygon that antipodally
symmetric on the boundary. Let

L : V (T )→ {+1,−1,+2,−2,+3,−3}

be a labelling of the vertices of T that satisfies L(−v) = −L(v) for
every vertex v on the boundary. Suppose that this labelling does
not have complementary edges. Then for any numbers a, b, c,
where |a| = 1, |b| = 2, |c | = 3, the total number of triangles in T
with labels (a, b, c) and (−a,−b,−c) is odd.
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Shashkin lemma

In other words, Shashkin proved that if
(a, b, c) = (1, 2, 3), (1,−2, 3), (1, 2,−3) and (1,−2,−3), then the
number of triangle with labels (a, b, c) or (−a,−b,−c) is odd.
Denote this number by SN(a, b, c). Then in the Figure we have
SN(1, 2, 3) = 3, SN(1,−2, 3) = 1,
SN(1, 2,−3) = 3, SN(1,−2,−3) = 3.
Note that, this result was published only in Russian and only for
two–dimensional case. Moreover, Shashkin attributes this theorem
to Ky Fan.
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Shashkin lemma

Figure 2: Illustration of Shashkin’s lemma.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2

1

3

-1

3

3

1

2

-2

-1

-2

-3

1

-3

-1

-2



Sperner type lemmas

Shashkin lemma

Theorem

Let T be a centrally symmetric triangulation of Sd . Let

L : V (T )→ Πd+1 := {+1,−1,+2,−2, . . . ,+(d + 1),−(d + 1)}

be an antipodal labelling of T . Suppose that this labelling does not
have complementary edges. Then for any set of labels
Λ := {`1, `2, . . . , `d+1} ⊂ Πd+1 with |`i | = i for all i , the number
of d–simplices in T that are labelled by Λ is odd.
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Borsuk-Ulam theorem for manifolds

Our analysis of Bárány’s proof shows that it can be extended for a
wide class of manifolds. For instance, consider two-dimensional
orientable manifolds X = M2

g of even genus g and non-orientable
manifolds X = N2

m with even m. We can assume that X is
“centrally symmetric" embedded to Rk , where k = 3 for X = M2

g
and k = 4 for X = N2

m.

That means A(X ) = X , where A(x) = −x for x ∈ Rk . Then
T := A|X : X → X is a free involution. It can be shown that there
is a projection of X ⊂ Rk into a 2-plane R passing through the
origin 0 with |Zf0 | = 2.
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Z2-maps

Let us consider a closed smooth manifold M with a free smooth
involution T : M → M, i.e. T 2(x) = x and T (x) 6= x for all
x ∈ M. For any Z2-manifold (M,T ) we say that a map
f : Mm → Rn is antipodal (or equivariant) if f (T (x)) = −f (x).

We say that a closed Z2-manifold (M,T ) is a BUT (Borsuk-Ulam
Type) manifold if for any continuous map F : Mn → Rn there is a
point x ∈ M such that

F (T (x)) = F (x).

In other words, if a continuous map f : Mn → Rn is antipodal,
then the set Zf := f −1(0) is not empty.
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BUT manifolds

Theorem

Let Mn be a closed connected manifold with a free involution T .
Then the following statements are equivalent:

(a) For any antipodal continuous map f : Mn → Rn the set Zf is
not empty.

(b) M admits an antipodal continuous transversal map
h : Mn → Rn with |Zh| = 4k + 2, k ∈ Z.

(c) µ(M,T ) := (wn
1 (M/T ), [M/T ]) 6= 0.

(d) [Mn,T ] = [Sn,A] + [V 1][Sn−1,A] + . . .+ [V n][S0,A] in Nn(Z2).
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BUT–manifolds

(e) M is a Lyusternik-Shnirelman type manifold, i.e. for any cover
F1, . . . ,Fn+1 of Mn by n + 1 closed (respectively, by n + 1 open)
sets, there is at least one set containing a pair (x ,T (x)).

(f) M is a Tucker type manifold, i.e. for any equivariant labelling
L : V (Λ)→ {+1,−1,+2,−2, . . . ,+n,−n} of any equivariant
triangulation Λ of M there exists a complementary edge.

(g) M is a Ky Fan type manifold, i.e. for any equivariant labelling
L : V (Λ)→ {+1,−1,+2,−2, . . . ,+m,−m} there is a
complementary edge or an odd number of n-simplices whose labels
are of the form {k0,−k1, k2, . . . , (−1)dkn}, where
1 ≤ k0 < k1 < . . . < kn ≤ m.
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Shashkin lemma for BUT–manifolds

Πd+1 := {+1,−1,+2,−2, . . . ,+(d + 1),−(d + 1)}

Theorem

Let (M,A) be a d-dimensional BUT–manifold. Let T be an
antipodally symmetric triangulation of M. Let L : V (T )→ Πd+1
be an antipodal labelling of T . Suppose that this labelling does not
have complementary edges. Then for any set of labels
Λ := {`1, `2, . . . , `d+1} ⊂ Πd+1 with |`i | = i for all i , the number
of d–simplices in T that are labelled by Λ is odd.
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Tucker and Shashkin’s lemma for manifolds with boundary

Theorem

Let M be a d–dimensional compact PL manifold with boundary
∂M. Suppose (∂M,A) is a BUT–manifold. Let T be a
triangulation of M that antipodally symmetric on ∂M.

Tucker: Let L : V (T )→ Πd be a labelling of T that is antipodal
on the boundary. Then there is a complementary edge in T .

Shashkin: Let L : V (T )→ Πd+1 be a labelling of T that is
antipodal on the boundary and has no complementary edges. Then
for any set of labels Λ := {`1, `2, . . . , `d+1} ⊂ Πd+1 with |`i | = i
for all i , the number of d–simplices in T that are labelled by Λ or
(−Λ) is odd.
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Homotopy invariants of covers and Sperner type lemmas

With any labelling of a simplicial complex T we associate certain
homotopy classes of maps T into spheres. These homotopy
invariants can be considered as obstructions for extensions of covers
of a subspace A to a space X . We using these obstructions for
generalizations of Sperner’s lemma. In particular, we show that in
the case when A is a k–sphere and X is a (k + 1)–disk there exist
Sperner type lemmas for covers by n + 2 sets if and only if the
homotopy group πk(Sn) 6= 0.
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Homotopy invariants of covers and Sperner type lemmas

Example 1: Let T be a triangulation of a tetrahedron S (S = B3).
L : V (∂T )→ {1, 2, 3}. If in ∂T = S2 there are no fully labeled
triangles, then fL : S2 → S1. So fL is null–homotopic and fL can be
extended to fL : B3 → S1.
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Homotopy invariants of covers and Sperner type lemmas

Example 2: Let T be a triangulation of a simplex (S = Bd+1).
L : V (∂T )→ {1, 2, 3, 4}. If in ∂T = Sd there are no fully labeled
simplices, then we have fL : Sd → S2. If d ≥ 2, πd (S2) 6= 0, then
there are non null–homotopic maps (labelings). Thus, we have a
Sperner type lemma.

For the case d = 3 we can construct a labelling from the Hopf
fibration (map) p : S3 → S2.
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Homotopy invariants of covers and Sperner type lemmas

We say that a pair (X ,A) of spaces belongs EPn and write
(X ,A) ∈ EPn if A is a subspace of a space X , there are non
null–homotopic continuous maps f : A→ Sn and any f with
[f ] 6= 0 in [A, Sn] cannot be extended to a continuous map
F : X → Sn with F |A = f .

We denoted this class of pairs by EP after S. Eilenberg and L. S.
Pontryagin who initiated the obstruction theory in the late 1930s
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Homotopy invariants of covers and Sperner type lemmas

Theorem

Let (X ,A) ∈ EPm−2 and let S = {S1, . . . , Sm} be a cover of A
such that the intersection of all Si is empty and [S] 6= 0 in
[A,Sm−2]. If F = {F1, . . . ,Fm} is a cover of X that extends S,
then all the Fi have a common intersection point.
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Homotopy invariants of covers and Sperner type lemmas

Theorem

Let X = |K | and A = |Q|, where K is a simplicial complex and Q
is a subcomplex of K. Suppose (X ,A) ∈ EPn. Let
L : Vrt(K )→ {1, 2, . . . ,m} be a labeling of K. Let
V := {v1, . . . , vm} and p be points in Rn+1. Suppose there are no
simplices in Q whose vertices are labeled by J ∈ covV (p). Let

h(Q, L,V , p) 6= 0 in [|Q|, Sn].

Then there are simplex s in K and J ∈ covV (p) such that vertices
of s have labels J.
If m = n + 2 and [Q, L] 6= 0 in [|Q|,Sn], then there is a simplex in
K that has all labels 1, . . . , n + 2.
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Thank you


