Sperner type lemmas and related topics

Oleg R. Musin

University of Texas at Brownsville

GeoSym, Veszprém, June 30, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

papers

O. R. Musin, Borsuk–Ulam type theorems for manifolds, *Proc. Amer. Math. Soc.* **140** (2012), 2551-2560.

O. R. Musin, Extensions of Sperner and Tucker's lemma for manifolds, *J. of Combin. Theory Ser. A*, **132** (2015), 172–187.

O. R. Musin, Sperner type lemma for quadrangulations, *Moscow J.* of *Combinatorics and Number Theory*, **5** (2015).

O. R. Musin & A. Yu. Volovikov, Borsuk–Ulam type spaces, *Mosc. Math. J.*, 2015+

O. R. Musin, Generalizations of Tucker–Fan–Shashkin lemmas, arXiv:1409.8637

O. R. Musin, Homotopy invariants of covers and KKM type lemmas, arXiv:1505.07629

Brouwer fixed point theorem (1912)

Brouwer fixed point theorem.

Any continuous map $f : B^n \to B^n$ must have a fixed point.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Here B^n denote an *n*-ball.

Sperner lemma (1928)

Theorem

(Sperner lemma) Every Sperner labelling of a triangulation of a d-dimensional simplex contains a cell labelled with a complete set of labels: $\{1, 2, ..., d + 1\}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Sperner lemma

Figure: A 2-dimensional illustration of Sperner's lemma

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Degree and Sperner's lemma

Theorem (M., 2014)

Let T be a triangulation of a PL orientable d-dimensional manifold M with boundary. Let $L: V(T) \rightarrow \{1, 2, ..., d + 1\}$ be any labelling. Then T contains at least $|\deg(f_L, \partial T)|$ fully labelled d-simplices, where $f_L: T \rightarrow \Delta^d$ and Δ^d is a d-dimensional simplex with vertices 1, 2, ..., d + 1.

ション ふゆ く 山 マ チャット しょうくしゃ

For Sperner's labelling deg($L, \partial T$) := deg($f_L, \partial T$) = ±1.

Figure: deg($L, \partial T$) = 3. There are three fully labelled triangles.

A generalization of the De Loera - Petersen - Su theorem

Theorem (M., 2014)

Let P be a convex polytope in \mathbb{R}^d with n vertices. Let T be a triangulation of a compact oriented PL-manifold M of dimension d with boundary. Let $L: V(T) \rightarrow \{1, 2, ..., n\}$ be a labelling such that $f_{L,P}(\partial M) \subseteq \partial P$. Then T contains at least $(n - d)|\deg(L, \partial T)|$ fully labelled d-simplices.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらう

A generalization of the De Loera - Petersen - Su theorem

Figure: Octagon with two square holes. Here n = 4, $\deg(L, \partial T)| = 4$ and there are eight fully labelled triangles

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Sperner type lemma for quadrangulations

Denote by C^d the *d*-dimensional cube.

Theorem (M., 2015)

Let Q be a quadrangulation of an oriented d-dimensional manifold M. Suppose $L: V(Q) \rightarrow V(C^d)$ be a labelling such that $f_L(\partial Q) \subseteq \partial C^d$. Then Q contains at least $|\deg(L, \partial Q)|$ balanced labelled cells.

うして ふゆう ふほう ふほう うらう

Sperner type lemma for quadrangulations

Fig.: Sperner's labelling of $\Pi_2(4,3)$. One edge is colored with (1,3).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sperner type lemma for quadrangulations

Fig.: Since deg($L, \partial Q$) = 2, there are two balanced labelled cells.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Borsuk-Ulam theorem (1933)

The Borsuk - Ulam theorem (Borsuk, 1933). Four equivalent statements:

(a) For every continuous mapping f: Sⁿ → ℝⁿ there exists a point x ∈ Sⁿ with f(x) = f(-x).
(b) For every antipodal (i.e. f(-x) = -f(x)) continuous mapping f: Sⁿ → ℝⁿ there exists a point x ∈ Sⁿ with f(x) = 0.
(c) There is no antipodal continuous mapping f: Sⁿ → Sⁿ⁻¹.
(d) There is no continuous mapping f: Bⁿ → Sⁿ⁻¹ that is antipodal on the boundary.

ション ふゆ く 山 マ チャット しょうくしゃ

Tucker's lemma (1945)

Theorem (Tucker)

Let Λ be a triangulation of the ball \mathbb{B}^d that is antipodally symmetric on the boundary. Let

$$L: V(\Lambda) \rightarrow \{+1, -1, +2, -2, \ldots, +d, -d\}$$

be a labelling of the vertices of Λ that satisfies L(-v) = -L(v) for every vertex v on the boundary \mathbb{B}^d . Then there exists an edge in Λ that is "complementary": i.e., its two vertices are labelled by opposite numbers.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Tucker lemma

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Figure: Since deg($L, \partial T$) = 3, there are three complementary edges.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Tucker lemma for spheres

Theorem

Let Λ be an antipodal triangulation of \mathbb{S}^d . Let

$$L: V(\Lambda) \rightarrow \{+1, -1, +2, -2, \ldots, +d, -d\}$$

be an antipodal labelling of the vertices of Λ that satisfies L(-v) = -L(v) for all vertices. Then Λ contains a complimentary edge.

ション ふゆ く 山 マ チャット しょうくしゃ

Shashkin lemma (1996)

Theorem

Let T be a triangulation of a planar polygon that antipodally symmetric on the boundary. Let

$$L: V(T) \rightarrow \{+1, -1, +2, -2, +3, -3\}$$

be a labelling of the vertices of T that satisfies L(-v) = -L(v) for every vertex v on the boundary. Suppose that this labelling does not have complementary edges. Then for any numbers a, b, c, where |a| = 1, |b| = 2, |c| = 3, the total number of triangles in T with labels (a, b, c) and (-a, -b, -c) is odd.

Shashkin lemma

In other words, Shashkin proved that if (a, b, c) = (1, 2, 3), (1, -2, 3), (1, 2, -3) and (1, -2, -3), then the number of triangle with labels (a, b, c) or (-a, -b, -c) is odd. Denote this number by SN(a, b, c). Then in the Figure we have SN(1, 2, 3) = 3, SN(1, -2, 3) = 1, SN(1, 2, -3) = 3, SN(1, -2, -3) = 3.Note that, this result was published only in Russian and only for two-dimensional case. Moreover, Shashkin attributes this theorem to Ky Fan.

ション ふゆ く 山 マ チャット しょうくしゃ

Shashkin lemma

Figure 2: Illustration of Shashkin's lemma.

(ロ)、

Shashkin lemma

Theorem

Let T be a centrally symmetric triangulation of \mathbb{S}^d . Let

 $L: V(T) \to \Pi_{d+1} := \{+1, -1, +2, -2, \dots, +(d+1), -(d+1)\}$

be an antipodal labelling of T. Suppose that this labelling does not have complementary edges. Then for any set of labels $\Lambda := \{\ell_1, \ell_2, \dots, \ell_{d+1}\} \subset \prod_{d+1}$ with $|\ell_i| = i$ for all *i*, the number of *d*-simplices in T that are labelled by Λ is odd.

ション ふゆ く 山 マ チャット しょうくしゃ

Borsuk-Ulam theorem for manifolds

Our analysis of Bárány's proof shows that it can be extended for a wide class of manifolds. For instance, consider two-dimensional orientable manifolds $X = M_g^2$ of even genus g and non-orientable manifolds $X = N_m^2$ with even m. We can assume that X is "centrally symmetric" embedded to \mathbb{R}^k , where k = 3 for $X = M_g^2$ and k = 4 for $X = N_m^2$.

That means A(X) = X, where A(x) = -x for $x \in \mathbb{R}^k$. Then $T := A|_X : X \to X$ is a free involution. It can be shown that there is a projection of $X \subset \mathbb{R}^k$ into a 2-plane R passing through the origin 0 with $|Z_{f_0}| = 2$.

\mathbb{Z}_2 -maps

Let us consider a closed smooth manifold M with a free smooth involution $T: M \to M$, i.e. $T^2(x) = x$ and $T(x) \neq x$ for all $x \in M$. For any \mathbb{Z}_2 -manifold (M, T) we say that a map $f: M^m \to \mathbb{R}^n$ is antipodal (or equivariant) if f(T(x)) = -f(x).

We say that a closed \mathbb{Z}_2 -manifold (M, T) is a *BUT (Borsuk-Ulam Type) manifold* if for any continuous map $F : M^n \to \mathbb{R}^n$ there is a point $x \in M$ such that

$$F(T(x))=F(x).$$

In other words, if a continuous map $f: M^n \to \mathbb{R}^n$ is antipodal, then the set $Z_f := f^{-1}(0)$ is not empty.

BUT manifolds

Theorem

Let M^n be a closed connected manifold with a free involution T. Then the following statements are equivalent:

(a) For any antipodal continuous map $f : M^n \to \mathbb{R}^n$ the set Z_f is not empty.

(b) M admits an antipodal continuous transversal map $h: M^n \to \mathbb{R}^n$ with $|Z_h| = 4k + 2, \ k \in \mathbb{Z}$. (c) $\mu(M, T) := (w_1^n(M/T), [M/T]) \neq 0$. (d) $[M^n, T] = [\mathbb{S}^n, A] + [V^1][\mathbb{S}^{n-1}, A] + \ldots + [V^n][\mathbb{S}^0, A]$ in $\mathfrak{N}_n(\mathbb{Z}_2)$.

ション ふゆ く 山 マ チャット しょうくしゃ

BUT-manifolds

(e) *M* is a Lyusternik-Shnirelman type manifold, i.e. for any cover F_1, \ldots, F_{n+1} of M^n by n+1 closed (respectively, by n+1 open) sets, there is at least one set containing a pair (x, T(x)).

(f) *M* is a Tucker type manifold, i.e. for any equivariant labelling $L: V(\Lambda) \rightarrow \{+1, -1, +2, -2, ..., +n, -n\}$ of any equivariant triangulation Λ of *M* there exists a complementary edge.

(g) *M* is a Ky Fan type manifold, i.e. for any equivariant labelling $L: V(\Lambda) \rightarrow \{+1, -1, +2, -2, ..., +m, -m\}$ there is a complementary edge or an odd number of *n*-simplices whose labels are of the form $\{k_0, -k_1, k_2, ..., (-1)^d k_n\}$, where $1 \le k_0 < k_1 < ... < k_n \le m$.

Shashkin lemma for BUT-manifolds

$\Pi_{d+1} := \{+1, -1, +2, -2, \dots, +(d+1), -(d+1)\}$

Theorem

Let (M, A) be a d-dimensional BUT-manifold. Let T be an antipodally symmetric triangulation of M. Let $L : V(T) \rightarrow \Pi_{d+1}$ be an antipodal labelling of T. Suppose that this labelling does not have complementary edges. Then for any set of labels $\Lambda := \{\ell_1, \ell_2, \ldots, \ell_{d+1}\} \subset \Pi_{d+1}$ with $|\ell_i| = i$ for all *i*, the number of d-simplices in T that are labelled by Λ is odd.

ション ふゆ く 山 マ チャット しょうくしゃ

Tucker and Shashkin's lemma for manifolds with boundary

Theorem

Let M be a d-dimensional compact PL manifold with boundary ∂M . Suppose $(\partial M, A)$ is a BUT-manifold. Let T be a triangulation of M that antipodally symmetric on ∂M .

Tucker: Let $L: V(T) \rightarrow \prod_d$ be a labelling of T that is antipodal on the boundary. Then there is a complementary edge in T.

Shashkin: Let $L: V(T) \to \prod_{d+1}$ be a labelling of T that is antipodal on the boundary and has no complementary edges. Then for any set of labels $\Lambda := \{\ell_1, \ell_2, \ldots, \ell_{d+1}\} \subset \prod_{d+1}$ with $|\ell_i| = i$ for all i, the number of d-simplices in T that are labelled by Λ or $(-\Lambda)$ is odd.

With any labelling of a simplicial complex T we associate certain homotopy classes of maps T into spheres. These homotopy invariants can be considered as obstructions for extensions of covers of a subspace A to a space X. We using these obstructions for generalizations of Sperner's lemma. In particular, we show that in the case when A is a k-sphere and X is a (k + 1)-disk there exist Sperner type lemmas for covers by n + 2 sets if and only if the homotopy group $\pi_k(\mathbb{S}^n) \neq 0$.

Example 1: Let T be a triangulation of a tetrahedron S ($S = \mathbb{B}^3$). $L : V(\partial T) \rightarrow \{1, 2, 3\}$. If in $\partial T = \mathbb{S}^2$ there are no fully labeled triangles, then $f_L : \mathbb{S}^2 \rightarrow \mathbb{S}^1$. So f_L is null-homotopic and f_L can be extended to $f_L : \mathbb{B}^3 \rightarrow \mathbb{S}^1$.

うして ふゆう ふほう ふほう しょうく

Example 2: Let T be a triangulation of a simplex $(S = \mathbb{B}^{d+1})$. $L : V(\partial T) \rightarrow \{1, 2, 3, 4\}$. If in $\partial T = \mathbb{S}^d$ there are no fully labeled simplices, then we have $f_L : \mathbb{S}^d \rightarrow \mathbb{S}^2$. If $d \ge 2$, $\pi_d(\mathbb{S}^2) \ne 0$, then there are non null-homotopic maps (labelings). Thus, we have a Sperner type lemma.

For the case d = 3 we can construct a labelling from the Hopf fibration (map) $p : \mathbb{S}^3 \to \mathbb{S}^2$.

ション ふゆ く は マ く ほ マ く し マ

We say that a pair (X, A) of spaces belongs EP_n and write $(X, A) \in EP_n$ if A is a subspace of a space X, there are non null-homotopic continuous maps $f : A \to \mathbb{S}^n$ and any f with $[f] \neq 0$ in $[A, \mathbb{S}^n]$ cannot be extended to a continuous map $F : X \to \mathbb{S}^n$ with $F|_A = f$.

We denoted this class of pairs by EP after S. Eilenberg and L. S. Pontryagin who initiated the obstruction theory in the late 1930s

ション ふゆ く は マ く ほ マ く し マ

Theorem

Let $(X, A) \in EP_{m-2}$ and let $S = \{S_1, \ldots, S_m\}$ be a cover of A such that the intersection of all S_i is empty and $[S] \neq 0$ in $[A, S^{m-2}]$. If $\mathcal{F} = \{F_1, \ldots, F_m\}$ is a cover of X that extends S, then all the F_i have a common intersection point.

◆□▶ ◆圖▶ ★ 副▶ ★ 副▶ 三国 - のへで

Theorem

Let X = |K| and A = |Q|, where K is a simplicial complex and Q is a subcomplex of K. Suppose $(X, A) \in EP_n$. Let $L : Vrt(K) \rightarrow \{1, 2, ..., m\}$ be a labeling of K. Let $V := \{v_1, ..., v_m\}$ and p be points in \mathbb{R}^{n+1} . Suppose there are no simplices in Q whose vertices are labeled by $J \in cov_V(p)$. Let

 $h(Q, L, V, p) \neq 0$ in $[|Q|, \mathbb{S}^n]$.

Then there are simplex s in K and $J \in cov_V(p)$ such that vertices of s have labels J. If m = n + 2 and $[Q, L] \neq 0$ in $[|Q|, \mathbb{S}^n]$, then there is a simplex in K that has all labels $1, \ldots, n + 2$.

Thank you

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?