Just a Snip

Barry Monson, University of New Brunswick

(from projects with L.Berman, D.Oliveros, and G.Williams)

GeoSym, Veszprém, 2015

(supported in part by NSERC)

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra.
- 1970's: B. Grünbaum banish membranes.
- 1980's : Egon S.: Reguláre Inzidenzkomplexe-
- soon altor: these become abstract regular polytopes: Egon and Peter M., produce: ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.
- much happens ...

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguláre Inzidenzkomplexe.
- soon alter: these become abstract regular polytopes: Egon and Poter: M. produce: ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes
- much happens ...

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- seen after: these become abstract regular polytopes. Egen and Peter M. produce: ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes
- much happens ...

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- seen after: These become abstract regular polytopes. Egen and Peter, M. produce: ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.
- much happens ..

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes
- much happens.

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.

much happens

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.

much happens …

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.

much happens .

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce ARP and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.
- much happens ...

An **abstract** *n*-**polytope** Q is a poset having some of the key structural properties of the face lattice of a convex *n*-polytope, although Q

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face tessellations and many less familiar structures.

You can safely think of a finite 3-polytope as a *map on a compact surface*.

Skip over the details?

is a poset whose elements (= faces) satisfy:

is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F_{-1} and maximal face F_n

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or *flag* has n + 2 faces

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or *flag* has n + 2 faces

so Q has a strictly monotone rank function onto $\{-1, 0, \ldots, n\}$

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

• \mathcal{Q} satisfies the 'diamond' condition:

is a poset whose elements (= faces) satisfy:

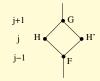
- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

• \mathcal{Q} satisfies the 'diamond' condition:

whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 there exist exactly two *j*-faces *H* with F < H < G



is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

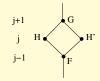
so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the disjoint union of two polyhedra $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$

• \mathcal{Q} satisfies the 'diamond' condition:

whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 there exist exactly two *j*-faces *H* with F < H < G



The symmetry of $\ensuremath{\mathcal{Q}}$

is described by its *automorphism group* Aut(Q). (automorphism = order-preserving bijection on Q) The axioms \Rightarrow each automorphism is det'd by its action on any one flag Φ . Example: for a polyhedron or 3-polytope Q, a flag

 $\Phi =$ incident [vertex, edge, facet] triple

<u>Defn.</u> The *n*-polytope Q is *regular* if Aut(Q) is transitive on flags. Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

the usual tiling of E² by unit cubes is an infinite regular 4-polytope

is described by its *automorphism group* Aut(Q). (automorphism = order-preserving bijection on Q) The axioms \Rightarrow each automorphism is det'd by its action on any one *flag* Φ . Example: for a polyhedron or 3-polytope Q, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Defn.</u> The *n*-polytope Q is *regular* if Aut(Q) is transitive on flags. Examples

any polygon (n = 2) is (abstractly, i.e. combinatorially) regular
the usual tiling of E³ by unit cubes is an infinite regular 4-polytope

is described by its *automorphism group* Aut(Q). (automorphism = order-preserving bijection on Q) The axioms \Rightarrow each automorphism is det'd by its action on any one *flag* Φ . Example: for a polyhedron or 3-polytope Q, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Defn.</u> The *n*-polytope Q is *regular* if Aut(Q) is transitive on flags. Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of \mathbb{E}^3 by unit cubes is an infinite regular 4-polytope

is described by its *automorphism group* Aut(Q). (automorphism = order-preserving bijection on Q) The axioms \Rightarrow each automorphism is det'd by its action on any one *flag* Φ . Example: for a polyhedron or 3-polytope Q, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Defn.</u> The *n*-polytope Q is *regular* if Aut(Q) is transitive on flags. Examples:

- any polygon (n = 2) is (abstractly, i.e. combinatorially) regular
- the usual tiling of \mathbb{E}^3 by unit cubes is an infinite regular 4-polytope

Examples in rank n = 3: the convex regular polyhedra (=Platonic solids) and the Kepler-Poinsot star-polyhedra

- Local data for both polyhedron Q and its group Aut(Q) reside in the Schläfli symbol or type $\{p, q\}$.
- Platonic solids: $\{3,3\}$ (tetrahedron), $\{3,4\}$ (octahedron), $\{4,3\}$ (cube), $\{3,5\}$ (icosahedron), $\{5,3\}$ (dodecahedron)
- Kepler (ca. 1619) $\{\frac{5}{2}, 5\}$ (small stellated dodecahedron), $\{\frac{5}{2}, 3\}$ (great stellated dodecahedron)
- Poinsot (ca. 1809) $\{5, \frac{5}{2}\}$ (great dodecahedron), $\{3, \frac{5}{2}\}$ (great isosahedron)

Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular *n*-polytopes \mathcal{P} correspond exactly to the *string C-groups of rank n* (which we often study in their place).

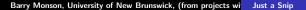
How? having fixed a base flag Φ in \mathcal{P} , for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_j \in \operatorname{Aut}(\mathcal{P})$ mapping Φ to the *j*-adjacent flag Φ^j . The axioms \Rightarrow these involutions generate $\operatorname{Aut}(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like

$$\stackrel{p_1}{\longrightarrow} \stackrel{p_2}{\longrightarrow} \cdots \stackrel{p_{n-1}}{\longrightarrow} ,$$

and perhaps other relations, so long as this *intersection condition* continues to hold:

$\langle \rho_k : k \in I \rangle \cap \langle \rho_k : k \in J \rangle = \langle \rho_k : k \in I \cap J \rangle$

(for all $I, J \subseteq \{0, ..., n-1\}$).



Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular *n*-polytopes \mathcal{P} correspond exactly to the *string C-groups of rank n* (which we often study in their place).

How? having fixed a base flag Φ in \mathcal{P} , for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_j \in \operatorname{Aut}(\mathcal{P})$ mapping Φ to the *j*-adjacent flag Φ^j . The axioms \Rightarrow these involutions generate $\operatorname{Aut}(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like

$$p_1 p_2 \cdots p_{n-1}$$

and perhaps other relations, so long as this intersection condition continues to hold:

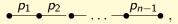
$\langle \rho_k : k \in I \rangle \cap \langle \rho_k : k \in J \rangle = \langle \rho_k : k \in I \cap J \rangle$

(for all $I, J \subseteq \{0, ..., n-1\}$).

Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular *n*-polytopes \mathcal{P} correspond exactly to the *string C-groups of rank n* (which we often study in their place).

How? having fixed a base flag Φ in \mathcal{P} , for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_j \in \operatorname{Aut}(\mathcal{P})$ mapping Φ to the *j*-adjacent flag Φ^j . The axioms \Rightarrow these involutions generate $\operatorname{Aut}(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like



and perhaps other relations, so long as this *intersection condition* continues to hold:

$$\langle \rho_k : k \in I \rangle \cap \langle \rho_k : k \in J \rangle = \langle \rho_k : k \in I \cap J \rangle$$

(for all $I, J \subseteq \{0, ..., n-1\}$).

To repeat: $\operatorname{Aut}(\mathcal{P})$ is a quotient of the Coxeter group with diagram

$$\underbrace{p_1 \quad p_2}{\bullet \cdots \bullet} \cdots \underbrace{- \underbrace{p_{n-1}}}{\bullet} \bullet$$

We then say that the regular polytope \mathcal{P} has Schläfli type $\{p_1, \ldots, p_{n-1}\}$.

Those 'other' relations which induce this quotient can confound the intersection condition.

Too much of my life has been spent fussing over that!

(

To repeat: $\operatorname{Aut}(\mathcal{P})$ is a quotient of the Coxeter group with diagram

$$\underbrace{p_1 \quad p_2}{\bullet \cdots \bullet \bullet} \cdots \underbrace{- \underbrace{p_{n-1}}{\bullet}}_{\bullet \cdots \bullet} \bullet$$

We then say that the regular polytope \mathcal{P} has Schläfli type $\{p_1, \ldots, p_{n-1}\}$.

Those 'other' relations which induce this quotient can confound the intersection condition.

Too much of my life has been spent fussing over that!

The Correspondence Theorem (Egon, 1982)

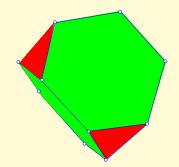
Part 1. If \mathcal{P} is a regular *n*-polytope, then $\operatorname{Aut}(\mathcal{P}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ is a *string C-group*.

Part 2. Conversely, if $A = \langle \rho_0, \dots, \rho_{n-1} \rangle$ is a string C-group, then we can reconstruct an *n*-polytope $\mathcal{P}(A)$ (in a natural way as a coset geometry on A).

Furthermore, $\operatorname{Aut}(\mathcal{P}(A)) \simeq A$ and $\mathcal{P}(\operatorname{Aut}(\mathcal{P})) \simeq \mathcal{P}$.

But most polytopes of rank $n \ge 3$ are not regular.

Eg. The truncated tetrahedron Q, although quite symmetrical, has facets of two types (and 3 flag orbits under the action of $Aut(Q) \simeq S_4$).



- Likewise, a map Q on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover *P* is unique (to isomorphism) if it covers *Q* minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if (2) is a face to face tessellation of the plane). In fact,
 - $\Delta {
 m ut}(\mathcal{P})\simeq {
 m Mon}(\mathcal{Q}),$ the monodromy group of \mathcal{Q}
- So it's endal that Mon(Q) is a string C-group when rank n = 3

- Likewise, a map \mathcal{Q} on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
 - The regular cover P is unique (to isomorphism) if it covers Q minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.

• Solit's crucial that Non(Q) is a string 6-group when rank n = 3

- Likewise, a map Q on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, $\operatorname{Aut}(\mathcal{P}) \simeq \operatorname{Mon}(\mathcal{Q})$, the monodromy group of Q.

• So it's crucial that Mon(Q) is a string C-group when rank n = 3.

- Likewise, a map \mathcal{Q} on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.

• So it's crucial that $Mon(\mathcal{Q})$ is a string C-group when rank n = 3.

- Likewise, a map ${\mathcal Q}$ on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.
- So it's crucial that Mon(Q) is a string C-group when rank n = 3.

The *diamond condition* on Q amounts to this:

for each flag Φ and proper rank j $(0 \le j \le n-1)$ there exists a unique flag Φ^j which is *j*-adjacent to Φ (means ...)

So $r_j : \Phi \mapsto \Phi^j$ defines a fixed-point-free involution on the flag set $\mathcal{F}(\mathcal{Q})$.

Defn. The *monodromy group* $Mon(Q) := \langle r_0, \ldots, r_{n-1} \rangle$

(a subgroup of the symmetric group acting on $\mathcal{F}(\mathcal{Q})$).

- encodes combinatorial essence of ${\cal Q}$

- says much about how $\mathcal Q$ can be covered by an abstract regular *n*-polytope $\mathcal P$
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- Mon(Q) is an sggi (> string group generated by involutions):
 η and η, commuted if |j > k| > 1.
- Mon(Q) sets on P(Q) in a way contraggediant to Mn(Q): for get Mon(Q), a to Mn(Q), dag det P(Q).

$(\Phi \alpha)^{g} = (\Phi^{g}) \alpha_{0}$

- encodes combinatorial essence of ${\mathcal Q}$
- says much about how ${\mathcal Q}$ can be covered by an abstract regular n-polytope ${\mathcal P}$
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- Mon(Q) is an sggi (= string group generated by involutions): r_j and r_k commute if |j - k| > 1
- Mon(Q) acts on F(Q) is a way contragradient to Aut(Q), for g ∈ Mon(Q), a ∈ Aut(Q), flag b ∈ F(Q).

$(\Phi \alpha)^{g} = (\Phi^{g}) \alpha$

- encodes combinatorial essence of ${\mathcal Q}$
- says much about how ${\mathcal Q}$ can be covered by an abstract regular n-polytope ${\mathcal P}$
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- Mon(Q) is an sggi (= string group generated by involutions):
 r_j and r_k commute if |j − k| > 1
- Mon(Q) acts on F(Q) in a way contragredient to Aut(Q) : for g ∈ Mon(Q), α ∈ Aut(Q), flag Φ ∈ F(Q)

 $(\Phi\alpha)^g = (\Phi^g)\alpha$

- encodes combinatorial essence of ${\cal Q}$
- says much about how ${\mathcal Q}$ can be covered by an abstract regular $\mathit{n}\text{-}\mathsf{polytope}\ {\mathcal P}$
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- Mon(Q) is an sggi (= string group generated by involutions): r_i and r_k commute if |j - k| > 1
- Mon(Q) acts on F(Q) in a way contragredient to Aut(Q) : for g ∈ Mon(Q), α ∈ Aut(Q), flag Φ ∈ F(Q)

 $(\Phi \alpha)^{g} = (\Phi^{g}) \alpha$

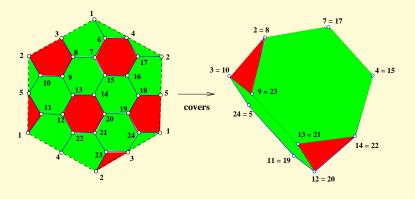
- encodes combinatorial essence of ${\mathcal Q}$
- says much about how ${\mathcal Q}$ can be covered by an abstract regular n-polytope ${\mathcal P}$
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- Mon(Q) is an sggi (= string group generated by involutions): r_j and r_k commute if |j - k| > 1
- Mon(Q) acts on F(Q) in a way contragredient to Aut(Q) : for g ∈ Mon(Q), α ∈ Aut(Q), flag Φ ∈ F(Q)

$$(\Phi\alpha)^{\mathsf{g}} = (\Phi^{\mathsf{g}})\alpha$$

Let's get back to an example.

Hartley and Williams (2009) determined the minimal regular cover \mathcal{P} for each classical (convex) Archimedean solid \mathcal{Q} in \mathbb{E}^3 .

Here the regular toroidal map $\mathcal{P}=\{6,3\}_{(2,2)}$ covers the truncated tetrahedron $\mathcal{Q}.$



UNB

Theorem For $n \ge 2$, let $M_n = \langle r_0, r_1, \dots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then

(a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$.

(b) M_n is isomorphic to $S_{n+1} \times S_n$.

(c) A presentation for M_{π} comes from adjoining to the standard relations for the Coxetor group with diagram $e^{-0} = e^{--1} = e^{--1} = e^{-1}$ (on π norms) just one extre magic relation

 $(r_0r_1r_0r_1r_2)^4 = c_1$

(or $n \ge 3$). This relation is independent of rank.

 $(r_0r_1r_0r_1r_2)^4 = e.$

(for $n \ge 3$). This relation is independent of rank.

 $(r_0r_1r_0r_1r_2)^4 = e.$

(for $n \ge 3$). This relation is independent of rank.

Theorem For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$. (b) M_n is isomorphic to $S_{n+1} \times S_n$. (c) A presentation for M_n comes from adjoining to the standard relations for the Coxeter group with diagram $\bullet_{-}^{6} \bullet_{-} \bullet_{-} \cdots \bullet_{-} \bullet$ (on *n* nodes) just one extra magic relation:

$$(r_0r_1r_0r_1r_2)^4 = e.$$

(for $n \geq 3$). This relation is independent of rank.

Theorem For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$. (b) M_n is isomorphic to $S_{n+1} \times S_n$. (c) A presentation for M_n comes from adjoining to the standard relations for the Coxeter group with diagram $\bullet_{-}^{6} \bullet_{-} \bullet_{-} \cdots \bullet_{-} \bullet$ (on *n* nodes) just one extra magic relation:

$$(r_0r_1r_0r_1r_2)^4 = e.$$

(for $n \ge 3$). This relation is independent of rank.

- (a) For $n \ge 1$, the truncated *n*-simplex has an essentially unique minimal regular cover \mathcal{P}_n with n! (n + 1)! flags.
- (b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.
- (c) M_n is a *mix* of the sort described in [ARP, 7A12].

(a) For $n \ge 1$, the truncated *n*-simplex has an essentially unique minimal regular cover \mathcal{P}_n with n! (n + 1)! flags.

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) *M_n* is a *mix* of the sort described in [ARP, 7A12].

(a) For $n \ge 1$, the truncated *n*-simplex has an essentially unique minimal regular cover \mathcal{P}_n with n! (n + 1)! flags.

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) M_n is a *mix* of the sort described in [ARP, 7A12].

The regular polytope \mathcal{P}_n with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_n$ and Schläfli type $\{6, 3, ..., 3\}$ has surfaced before several times:

(a) its dual \mathcal{P}_n^* was described by Egon as a regular incidence-polytope in 1985.

(b) $\mathcal{P}_4 \simeq {}_3\mathcal{T}^4_{(2,2)}$, a universal locally toroidal polytope described by Egon and Peter in ARP (2002).

(c) it is the *symmetric graphicahedron* based on the complete bipartite graph $K_{1,n}$ (= the *n*-star) (Egon and Gabriela A-P., Maria D R-F., Mariana L-D., Deborah O.)

The regular polytope \mathcal{P}_n with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_n$ and Schläfli type $\{6, 3, ..., 3\}$ has surfaced before several times:

(a) its dual \mathcal{P}_n^* was described by Egon as a regular incidence-polytope in 1985.

(b) $\mathcal{P}_4 \simeq {}_3\mathcal{T}^4_{(2,2)}$, a universal locally toroidal polytope described by Egon and Peter in ARP (2002).

(c) it is the *symmetric graphicahedron* based on the complete bipartite graph $K_{1,n}$ (= the *n*-star) (Egon and Gabriela A-P., Maria D R-F., Mariana L-D., Deborah O.)

The regular polytope \mathcal{P}_n with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_n$ and Schläfli type $\{6, 3, ..., 3\}$ has surfaced before several times:

(a) its dual \mathcal{P}_n^* was described by Egon as a regular incidence-polytope in 1985.

(b) $\mathcal{P}_4 \simeq {}_3\mathcal{T}^4_{(2,2)}$, a universal locally toroidal polytope described by Egon and Peter in ARP (2002).

(c) it is the symmetric graphicahedron based on the complete bipartite graph $K_{1,n}$ (= the *n*-star) (Egon and Gabriela A-P., Maria D R-F., Mariana L-D., Deborah O.)

 $\operatorname{Aut}(\mathcal{P}_n) \simeq S_{n+1} \times S_n$ is a rich supply of subgroups which are themselves string C-groups (see our paper in *J. Algebr. Comb.*, 2015):

j	Туре	Order	Comments
0	$\{6,3,\ldots,3\}$	(n+1)!n!	$\operatorname{Aut}(\mathcal{P}_n)$ to start
1	$\{3, 6, 3, \dots, 3\}$	(n+1)!(n-1)!	
j	$\{3, \ldots, 3, 6, 3, \ldots, 3\}$	(n+1)!(n-j)!	
<i>n</i> – 2	$\{3,\ldots,3,6\}$	(n+1)!2!	
n-1	$\{3, \dots, 3, 3\}$	(n+1)!	S_{n+1} , <i>n</i> -simplex

Project: reinterpret this construction using CPR graphs.

 $\operatorname{Aut}(\mathcal{P}_n) \simeq S_{n+1} \times S_n$ is a rich supply of subgroups which are themselves string C-groups (see our paper in *J. Algebr. Comb.*, 2015):

j	Туре	Order	Comments
0	$\{6,3,\ldots,3\}$	(n+1)!n!	$\operatorname{Aut}(\mathcal{P}_n)$ to start
1	$\{3, 6, 3, \dots, 3\}$	(n+1)!(n-1)!	
j	$\{3, \ldots, 3, 6, 3, \ldots, 3\}$	(n+1)!(n-j)!	
<i>n</i> – 2	$\{3, \dots, 3, 6\}$	(n+1)!2!	
n-1	$\{3,\ldots,3,3\}$	(n+1)!	S _{n+1} , <i>n</i> -simplex

Project: reinterpret this construction using CPR graphs.

Again $Aut(\mathcal{P}_n) \simeq S_{n+1} \times S_n$. For $0 \le j \le n-1$, there is a subgroup $W_n(j)$ such that

•
$$W_n(j)$$
 has index $\left(egin{array}{c}n\\j+1\end{array}
ight)$ in $\operatorname{Aut}(\mathcal{P}_n)$

•
$$W_n(j) \simeq S_{n+1} \times S_{j+1} \times S_{n-j-1}$$

- *W_n(j)* is a string C-group of type {3,...,3,6,3,6,3,...,3} (first '6' in the *j*th position)
- $W_n(j)$ and $W_n(n-j-2)$ are isomorphic in dual fashion.

Note: actually $W_n(0)$ has type $\{3, 6, 3, 3, ..., 3\}$

a more general fact concerning certain Coxeter groups:

For $p \ge 2$, the Coxeter group of rank n and diagram

has a subgroup of index $\binom{n}{j+1}$ which is isomorphic in turn to the Coxeter group with diagram

$$\bullet \underbrace{3}{} \bullet - \cdots - \bullet \underbrace{3}{} \bullet \underbrace{2p}{} \bullet \underbrace{p}{} \bullet \underbrace{2p}{} \bullet \underbrace{3}{} \bullet - \cdots - \bullet \underbrace{3}{} \bullet ,$$

where the first "2p" labels the *j* th branch of the diagram.

when and in what circumstances a subset of n reflections in a Coxeter group

$$W = \langle r_0, \ldots, r_n \rangle$$

(of rank n), themselves generate a Coxeter group of rank n?

Note: **Defn**: here, a *reflection* in W is any conjugate of some r_j . This makes sense in the context of the standard linear representation of W.

when and in what circumstances a subset of n reflections in a Coxeter group

$$W = \langle r_0, \ldots, r_n \rangle$$

(of rank n), themselves generate a Coxeter group of rank n?

Note: **Defn**: here, a *reflection* in W is any conjugate of some r_j . This makes sense in the context of the standard linear representation of W.

Many thanks to our organizers!

[1] L. Berman, B. Monson, D. Oliveros and G. Williams, *The monodromy group of a truncated simplex*, J. Algebr. Comb., 2015.

[2] L. Berman, B. Monson, D. Oliveros and G. Williams, *Fully truncated simplices and their monodromy groups*, on the front burner, 2015.

[3] P. McMullen and E. Schulte, *Abstract Regular Polytopes*, Encyclopedia of Mathematics and its Applications, **92**, Cambridge University Press, Cambridge, 2002.

[4] B.Monson, D. Pellicer and G. Williams, *Mixing and Monodromy of Abstract Polytopes*, Trans. AMS., 2014.

