Just a Snip

Barry Monson, University of New Brunswick

(from projects with L.Berman, D.Oliveros, and G.Williams)

GeoSym, Veszprém, 2015
(supported in part by NSERC)

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum - banish membranes

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum - banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum - banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M . produce ARP and much else.

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum - banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce $A R P$ and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.

Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and polytopes has old and deep, if somewhat disguised, roots:

- 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot
- late 19th C: early work on regular maps
- 1930's: Coxeter-Petrie polyhedra
- 1970's: B. Grünbaum - banish membranes
- 1980's : Egon S.: Reguläre Inzidenzkomplexe
- soon after: these become abstract regular polytopes; Egon and Peter M. produce $A R P$ and much else.
- 1990's: Asia W. and Egon produce chiral polytopes.
- much happens ...

So what are abstract polytopes?

An abstract n-polytope \mathcal{Q} is a poset having some of the key structural properties of the face lattice of a convex n-polytope, although \mathcal{Q}

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face tessellations and many less familiar structures.

You can safely think of a finite 3-polytope as a map on a compact surface.

The n-polytope \mathcal{Q}

is a poset whose elements (= faces) satisfy:

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces
so \mathcal{Q} has a strictly monotone rank function onto $\{-1,0, \ldots, n\}$

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces
so \mathcal{Q} has a strictly monotone rank function onto $\{-1,0, \ldots, n\}$
- \mathcal{Q} is strongly flag connected

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces
so \mathcal{Q} has a strictly monotone rank function onto $\{-1,0, \ldots, n\}$
- \mathcal{Q} is strongly flag connected
- \mathcal{Q} satisfies the 'diamond' condition:

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces
so \mathcal{Q} has a strictly monotone rank function onto $\{-1,0, \ldots, n\}$
- \mathcal{Q} is strongly flag connected
- \mathcal{Q} satisfies the 'diamond' condition:
whenever $F<G$ with $\operatorname{rank}(F)=j-1$ and $\operatorname{rank}(G)=j+1$ there exist exactly two j-faces H with $F<H<G$

The n-polytope \mathcal{Q}

is a poset whose elements ($=$ faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_{n}
- Every maximal chain or flag has $n+2$ faces
so \mathcal{Q} has a strictly monotone rank function onto $\{-1,0, \ldots, n\}$
- \mathcal{Q} is strongly flag connected
via adjacency in the flag graph; this rules out, for example, the disjoint union of two polyhedra
- \mathcal{Q} satisfies the 'diamond' condition:
whenever $F<G$ with $\operatorname{rank}(F)=j-1$ and $\operatorname{rank}(G)=j+1$ there exist exactly two j-faces H with $F<H<G$

The symmetry of \mathcal{Q}

is described by its automorphism group $\operatorname{Aut}(\mathcal{Q})$.
(automorphism $=$ order-preserving bijection on \mathcal{Q})

The symmetry of \mathcal{Q}

is described by its automorphism group $\operatorname{Aut}(\mathcal{Q})$.
(automorphism $=$ order-preserving bijection on \mathcal{Q})
The axioms \Rightarrow each automorphism is det'd by its action on any one flag Φ.
Example: for a polyhedron or 3-polytope \mathcal{Q}, a flag

$$
\Phi=\text { incident [vertex, edge, facet] triple }
$$

Defn. The n-polytope \mathcal{Q} is regular if $\operatorname{Aut}(\mathcal{Q})$ is transitive on flags.

The symmetry of \mathcal{Q}

is described by its automorphism group $\operatorname{Aut}(\mathcal{Q})$.
(automorphism $=$ order-preserving bijection on \mathcal{Q})
The axioms \Rightarrow each automorphism is det'd by its action on any one flag Φ.
Example: for a polyhedron or 3-polytope \mathcal{Q}, a flag

$$
\Phi=\text { incident [vertex, edge, facet] triple }
$$

Defn. The n-polytope \mathcal{Q} is regular if $\operatorname{Aut}(\mathcal{Q})$ is transitive on flags.
Examples:

- any polygon $(n=2)$ is (abstractly, i.e. combinatorially) regular

The symmetry of \mathcal{Q}

is described by its automorphism group $\operatorname{Aut}(\mathcal{Q})$.
(automorphism $=$ order-preserving bijection on \mathcal{Q})
The axioms \Rightarrow each automorphism is det'd by its action on any one flag Φ.
Example: for a polyhedron or 3-polytope \mathcal{Q}, a flag

$$
\Phi=\text { incident [vertex, edge, facet] triple }
$$

Defn. The n-polytope \mathcal{Q} is regular if $\operatorname{Aut}(\mathcal{Q})$ is transitive on flags.
Examples:

- any polygon $(n=2)$ is (abstractly, i.e. combinatorially) regular
- the usual tiling of \mathbb{E}^{3} by unit cubes is an infinite regular 4-polytope

Examples in rank $n=3$: the convex regular polyhedra (=Platonic solids) and the Kepler-Poinsot star-polyhedra

Local data for both polyhedron \mathcal{Q} and its $\operatorname{group} \operatorname{Aut}(\mathcal{Q})$ reside in the Schläfli symbol or type $\{p, q\}$.

Platonic solids: $\{3,3\}$ (tetrahedron), $\{3,4\}$ (octahedron), $\{4,3\}$ (cube), $\{3,5\}$ (icosahedron), $\{5,3\}$ (dodecahedron)

Kepler (ca. 1619) $\left\{\frac{5}{2}, 5\right\}$ (small stellated dodecahedron), $\left\{\frac{5}{2}, 3\right\}$ (great stellated dodecahedron)

Poinsot (ca. 1809) $\left\{5, \frac{5}{2}\right\}$ (great dodecahedron), $\left\{3, \frac{5}{2}\right\}$ (great isosahedron)

Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular n-polytopes \mathcal{P} correspond exactly to the string C-groups of rank n (which we often study in their place).

Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular n-polytopes \mathcal{P} correspond exactly to the string C-groups of rank n (which we often study in their place).

How? having fixed a base flag Φ in \mathcal{P}, for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_{j} \in \operatorname{Aut}(\mathcal{P})$ mapping Φ to the j-adjacent flag Φ^{j}. The axioms \Rightarrow these involutions generate $\operatorname{Aut}(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like

$$
\bullet \stackrel{p_{1}}{\bullet} \stackrel{p_{2}}{\bullet}-\ldots \xrightarrow{p_{n-1}} \text {, }
$$

and perhaps other relations,

Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular n-polytopes \mathcal{P} correspond exactly to the string C-groups of rank n (which we often study in their place).

How? having fixed a base flag Φ in \mathcal{P}, for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_{j} \in \operatorname{Aut}(\mathcal{P})$ mapping Φ to the j-adjacent flag Φ^{j}. The axioms \Rightarrow these involutions generate $\operatorname{Aut}(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like

$$
\bullet p_{1} \stackrel{p_{2}}{\bullet} \ldots \xrightarrow{p_{n-1}}
$$

and perhaps other relations, so long as this intersection condition continues to hold:

$$
\left\langle\rho_{k}: k \in I\right\rangle \cap\left\langle\rho_{k}: k \in J\right\rangle=\left\langle\rho_{k}: k \in I \cap J\right\rangle
$$

(for all $I, J \subseteq\{0, \ldots, n-1\}$).

It's a hard life we lead

To repeat: $\operatorname{Aut}(\mathcal{P})$ is a quotient of the Coxeter group with diagram

We then say that the regular polytope \mathcal{P} has Schläfli type $\left\{p_{1}, \ldots, p_{n-1}\right\}$.
Those 'other' relations which induce this quotient can confound the intersection condition.

It's a hard life we lead ...

To repeat: $\operatorname{Aut}(\mathcal{P})$ is a quotient of the Coxeter group with diagram

We then say that the regular polytope \mathcal{P} has Schläfli type $\left\{p_{1}, \ldots, p_{n-1}\right\}$.
Those 'other' relations which induce this quotient can confound the intersection condition.

Too much of my life has been spent fussing over that!

Regular polytopes \leftrightarrow string C-groups

The Correspondence Theorem (Egon, 1982)
Part 1. If \mathcal{P} is a regular n-polytope, then $\operatorname{Aut}(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ is a string C-group.

Part 2. Conversely, if $A=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ is a string C-group, then we can reconstruct an n-polytope $\mathcal{P}(A)$ (in a natural way as a coset geometry on A).

Furthermore, $\operatorname{Aut}(\mathcal{P}(A)) \simeq A$ and $\mathcal{P}(\operatorname{Aut}(\mathcal{P})) \simeq \mathcal{P}$.

Regularity is rare, despite its ubiquity

But most polytopes of rank $n \geq 3$ are not regular.

Eg. The truncated tetrahedron \mathcal{Q}, although quite symmetrical, has facets of two types (and 3 flag orbits under the action of $\left.\operatorname{Aut}(\mathcal{Q}) \simeq S_{4}\right)$.

Now lift to covers

- Likewise, a $\operatorname{map} \mathcal{Q}$ on a compact surface will not usually be regular.

Now lift to covers ...

- Likewise, a $\operatorname{map} \mathcal{Q}$ on a compact surface will not usually be regular.
- But it is well-known that \mathcal{Q} is covered by a regular map \mathcal{P} (usually on some other surface).

Now lift to covers ...

- Likewise, a $\operatorname{map} \mathcal{Q}$ on a compact surface will not usually be regular.
- But it is well-known that \mathcal{Q} is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.

Now lift to covers ...

- Likewise, a $\operatorname{map} \mathcal{Q}$ on a compact surface will not usually be regular.
- But it is well-known that \mathcal{Q} is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if \mathcal{Q} is a face-to-face tessellation of the plane). In fact,

$$
\operatorname{Aut}(\mathcal{P}) \simeq \operatorname{Mon}(\mathcal{Q}), \text { the monodromy group of } \mathcal{Q}
$$

Now lift to covers ...

- Likewise, a map \mathcal{Q} on a compact surface will not usually be regular.
- But it is well-known that \mathcal{Q} is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if \mathcal{Q} is a face-to-face tessellation of the plane). In fact,

$$
\operatorname{Aut}(\mathcal{P}) \simeq \operatorname{Mon}(\mathcal{Q}), \text { the monodromy group of } \mathcal{Q}
$$

- So it's crucial that $\operatorname{Mon}(\mathcal{Q})$ is a string C-group when rank $n=3$.

Monodromy scrambles the flags of an n-polytope $\mathcal{Q} \ldots$

The diamond condition on \mathcal{Q} amounts to this:
for each flag Φ and proper rank $j(0 \leq j \leq n-1)$ there exists a unique flag Φ^{j} which is j-adjacent to Φ (means ...)

So $r_{j}: \Phi \mapsto \Phi^{j}$ defines a fixed-point-free involution on the flag set $\mathcal{F}(\mathcal{Q})$.
Defn. The monodromy group $\operatorname{Mon}(\mathcal{Q}):=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$
(a subgroup of the symmetric group acting on $\mathcal{F}(\mathcal{Q})$).

More on $\operatorname{Mon}(\mathcal{Q})$

- encodes combinatorial essence of \mathcal{Q}

More on $\operatorname{Mon}(\mathcal{Q})$

- encodes combinatorial essence of \mathcal{Q}
- says much about how \mathcal{Q} can be covered by an abstract regular n-polytope \mathcal{P}

More on $\operatorname{Mon}(\mathcal{Q})$

- encodes combinatorial essence of \mathcal{Q}
- says much about how \mathcal{Q} can be covered by an abstract regular n-polytope \mathcal{P}
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$

More on $\operatorname{Mon}(\mathcal{Q})$

- encodes combinatorial essence of \mathcal{Q}
- says much about how \mathcal{Q} can be covered by an abstract regular n-polytope \mathcal{P}
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- $\operatorname{Mon}(\mathcal{Q})$ is an sggi (= string group generated by involutions): r_{j} and r_{k} commute if $|j-k|>1$

More on $\operatorname{Mon}(\mathcal{Q})$

- encodes combinatorial essence of \mathcal{Q}
- says much about how \mathcal{Q} can be covered by an abstract regular n-polytope \mathcal{P}
- flag connectedness of $\mathcal{Q} \Rightarrow \operatorname{Mon}(\mathcal{Q})$ transitive on $\mathcal{F}(\mathcal{Q})$
- $\operatorname{Mon}(\mathcal{Q})$ is an sggi (= string group generated by involutions): r_{j} and r_{k} commute if $|j-k|>1$
- $\operatorname{Mon}(\mathcal{Q})$ acts on $\mathcal{F}(\mathcal{Q})$ in a way contragredient to $\operatorname{Aut}(\mathcal{Q})$: for $g \in \operatorname{Mon}(\mathcal{Q}), \alpha \in \operatorname{Aut}(\mathcal{Q})$, flag $\Phi \in \mathcal{F}(\mathcal{Q})$

$$
(\Phi \alpha)^{g}=\left(\Phi^{g}\right) \alpha
$$

Let's get back to an example.

Hartley and Williams (2009) determined the minimal regular cover \mathcal{P} for each classical (convex) Archimedean solid \mathcal{Q} in \mathbb{E}^{3}.

Here the regular toroidal map $\mathcal{P}=\{6,3\}_{(2,2)}$ covers the truncated tetrahedron \mathcal{Q}.

Barry Monson, University of New Brunswick, (from projects wi Just a Snip

Recently, L. Berman, D. Oliveros, G. Williams and I

found
Theorem For $n \geq 2$, let $M_{n}=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ be the monodromy group of the truncated n-simplex. Then

Recently, L. Berman, D. Oliveros, G. Williams and I

found
Theorem For $n \geq 2$, let $M_{n}=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ be the monodromy group of the truncated n-simplex. Then
(a) M_{n} is a string C-group of type $\{6,3, \ldots, 3\}$.

Recently, L. Berman, D. Oliveros, G. Williams and I

found
Theorem For $n \geq 2$, let $M_{n}=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ be the monodromy group of the truncated n-simplex. Then
(a) M_{n} is a string C-group of type $\{6,3, \ldots, 3\}$.
(b) M_{n} is isomorphic to $S_{n+1} \times S_{n}$.

Recently, L. Berman, D. Oliveros, G. Williams and I

found

Theorem For $n \geq 2$, let $M_{n}=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ be the monodromy group of the truncated n-simplex. Then
(a) M_{n} is a string C-group of type $\{6,3, \ldots, 3\}$.
(b) M_{n} is isomorphic to $S_{n+1} \times S_{n}$.
(c) A presentation for M_{n} comes from adjoining to the standard relations for the Coxeter group with diagram $\bullet \bullet \bullet \bullet-\cdots-\bullet-\bullet$ (on n nodes) just one extra magic relation:

$$
\left(r_{0} r_{1} r_{0} r_{1} r_{2}\right)^{4}=e
$$

(for $n \geq 3$).

Recently, L. Berman, D. Oliveros, G. Williams and I

found

Theorem For $n \geq 2$, let $M_{n}=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ be the monodromy group of the truncated n-simplex. Then
(a) M_{n} is a string C-group of type $\{6,3, \ldots, 3\}$.
(b) M_{n} is isomorphic to $S_{n+1} \times S_{n}$.
(c) A presentation for M_{n} comes from adjoining to the standard relations for the Coxeter group with diagram $\bullet \bullet \bullet \bullet-\cdots-\bullet-\bullet$ (on n nodes) just one extra magic relation:

$$
\left(r_{0} r_{1} r_{0} r_{1} r_{2}\right)^{4}=e
$$

(for $n \geq 3$). This relation is independent of rank.

This means

(a) For $n \geq 1$, the truncated n-simplex has an essentially unique minimal regular cover \mathcal{P}_{n} with $n!(n+1)$! flags.

This means

(a) For $n \geq 1$, the truncated n-simplex has an essentially unique minimal regular cover \mathcal{P}_{n} with $n!(n+1)$! flags.
(b) For $n \geq 4, \mathcal{P}_{n}$ is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

This means

(a) For $n \geq 1$, the truncated n-simplex has an essentially unique minimal regular cover \mathcal{P}_{n} with $n!(n+1)$! flags.
(b) For $n \geq 4, \mathcal{P}_{n}$ is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.
(c) M_{n} is a mix of the sort described in [ARP, 7A12].

In fact ...

The regular polytope \mathcal{P}_{n} with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_{n}$ and Schläfli type $\{6,3, \ldots, 3\}$ has surfaced before several times:
(a) its dual \mathcal{P}_{n}^{*} was described by Egon as a regular incidence-polytope in 1985.

In fact ...

The regular polytope \mathcal{P}_{n} with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_{n}$ and Schläfli type $\{6,3, \ldots, 3\}$ has surfaced before several times:
(a) its dual \mathcal{P}_{n}^{*} was described by Egon as a regular incidence-polytope in 1985.
(b) $\mathcal{P}_{4} \simeq{ }_{3} \mathcal{T}_{(2,2)}^{4}$, a universal locally toroidal polytope described by Egon and Peter in ARP (2002).

In fact ...

The regular polytope \mathcal{P}_{n} with $\operatorname{Aut}(\mathcal{P}) \simeq S_{n+1} \times S_{n}$ and Schläfli type $\{6,3, \ldots, 3\}$ has surfaced before several times:
(a) its dual \mathcal{P}_{n}^{*} was described by Egon as a regular incidence-polytope in 1985.
(b) $\mathcal{P}_{4} \simeq{ }_{3} \mathcal{T}_{(2,2)}^{4}$, a universal locally toroidal polytope described by Egon and Peter in ARP (2002).
(c) it is the symmetric graphicahedron based on the complete bipartite graph $K_{1, n}$ ($=$ the n-star)
(Egon and Gabriela A-P., Maria D R-F., Mariana L-D., Deborah O.)

Yet more regular polytopes, many of them new...

$\operatorname{Aut}\left(\mathcal{P}_{n}\right) \simeq S_{n+1} \times S_{n}$ is a rich supply of subgroups which are themselves string C-groups (see our paper in J. Algebr. Comb., 2015):

j	Type	Order	Comments
0	$\{6,3, \ldots, 3\}$	$(n+1)!n!$	$\operatorname{Aut}\left(\mathcal{P}_{n}\right)$ to start
1	$\{3,6,3, \ldots, 3\}$	$(n+1)!(n-1)!$	
j	$\{3, \ldots, 3,6,3, \ldots, 3\}$	$(n+1)!(n-j)!$	
$n-2$	$\{3, \ldots, 3,6\}$	$(n+1)!2!$	
$n-1$	$\{3, \ldots, 3,3\}$	$(n+1)!$	S_{n+1}, n-simplex

Yet more regular polytopes, many of them new...

$\operatorname{Aut}\left(\mathcal{P}_{n}\right) \simeq S_{n+1} \times S_{n}$ is a rich supply of subgroups which are themselves string C-groups (see our paper in J. Algebr. Comb., 2015):

j	Type	Order	Comments
0	$\{6,3, \ldots, 3\}$	$(n+1)!n!$	$\operatorname{Aut}\left(\mathcal{P}_{n}\right)$ to start
1	$\{3,6,3, \ldots, 3\}$	$(n+1)!(n-1)!$	
j	$\{3, \ldots, 3,6,3, \ldots, 3\}$	$(n+1)!(n-j)!$	
$n-2$	$\{3, \ldots, 3,6\}$	$(n+1)!2!$	
$n-1$	$\{3, \ldots, 3,3\}$	$(n+1)!$	S_{n+1}, n-simplex

Project: reinterpret this construction using CPR graphs.

And a more subtle class of related regular polytopes

Again $\operatorname{Aut}\left(\mathcal{P}_{n}\right) \simeq S_{n+1} \times S_{n}$. For $0 \leq j \leq n-1$, there is a subgroup $W_{n}(j)$ such that

- $W_{n}(j)$ has index $\binom{n}{j+1}$ in $\operatorname{Aut}\left(\mathcal{P}_{n}\right)$
- $W_{n}(j) \simeq S_{n+1} \times S_{j+1} \times S_{n-j-1}$
- $W_{n}(j)$ is a string C-group of type $\{3, \ldots, 3,6,3,6,3, \ldots, 3\}$ (first ' 6 ' in the j th position)
- $W_{n}(j)$ and $W_{n}(n-j-2)$ are isomorphic in dual fashion.

Note: actually $W_{n}(0)$ has type $\{3,6,3,3, \ldots, 3\}$

This relates to ...

a more general fact concerning certain Coxeter groups:
For $p \geq 2$, the Coxeter group of rank n and diagram

has a subgroup of index $\binom{n}{j+1}$ which is isomorphic in turn to the Coxeter group with diagram

where the first " $2 p$ " labels the j th branch of the diagram.

Is it known

when and in what circumstances a subset of n reflections in a Coxeter group

$$
W=\left\langle r_{0}, \ldots, r_{n}\right\rangle
$$

(of rank n), themselves generate a Coxeter group of rank n ?
Note: Defn: here, a reflection in W is any conjugate of some r_{j}. This makes sense in the context of the standard linear representation of W.

Is it known

when and in what circumstances a subset of n reflections in a Coxeter group

$$
W=\left\langle r_{0}, \ldots, r_{n}\right\rangle
$$

(of rank n), themselves generate a Coxeter group of rank n ?
Note: Defn: here, a reflection in W is any conjugate of some r_{j}. This makes sense in the context of the standard linear representation of W.

Many thanks to our organizers!

References

[1] L. Berman, B. Monson, D. Oliveros and G. Williams, The monodromy group of a truncated simplex, J. Algebr. Comb., 2015.
[2] L. Berman, B. Monson, D. Oliveros and G. Williams, Fully truncated simplices and their monodromy groups, on the front burner, 2015.
[3] P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, 92, Cambridge University Press, Cambridge, 2002.
[4] B.Monson, D. Pellicer and G. Williams, Mixing and Monodromy of Abstract Polytopes, Trans. AMS., 2014.

