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Where have we come from?

The abstract (= combinatorial) way of thinking about polyhedra and
polytopes has old and deep, if somewhat disguised, roots:

• 17th-19th C and earlier: star-polyhedra of Kepler, Poinsot

• late 19th C: early work on regular maps

• 1930’s: Coxeter-Petrie polyhedra

• 1970’s: B. Grünbaum - banish membranes

• 1980’s : Egon S.: Reguläre Inzidenzkomplexe

• soon after: these become abstract regular polytopes; Egon and Peter
M. produce ARP and much else.

• 1990’s: Asia W. and Egon produce chiral polytopes.

• much happens ...
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• 1970’s: B. Grünbaum - banish membranes

• 1980’s : Egon S.: Reguläre Inzidenzkomplexe
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• 1970’s: B. Grünbaum - banish membranes

• 1980’s : Egon S.: Reguläre Inzidenzkomplexe
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So what are abstract polytopes?

An abstract n-polytope Q is a poset having some of the key structural
properties of the face lattice of a convex n-polytope, although Q

• need not be a lattice

• need not be finite

• need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face
tessellations and many less familiar structures.

You can safely think of a finite 3-polytope as a map on a compact surface.

Skip over the details?
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The n-polytope Q
is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F−1 and maximal face Fn

• Every maximal chain or flag has n + 2 faces

so Q has a strictly monotone rank function onto {−1, 0, . . . , n}
• Q is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the
disjoint union of two polyhedra

• Q satisfies the ‘diamond’ condition:

whenever F < G with rank(F ) = j − 1 and rank(G ) = j + 1 there
exist exactly two j-faces H with F < H < G

H H’

F

G

j

j+1

j−1
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The symmetry of Q

is described by its automorphism group Aut(Q).

(automorphism = order-preserving bijection on Q)

The axioms⇒ each automorphism is det’d by its action on any one flag Φ.

Example: for a polyhedron or 3-polytope Q, a flag

Φ = incident [vertex, edge, facet] triple

Defn. The n-polytope Q is regular if Aut(Q) is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of E3 by unit cubes is an infinite regular 4-polytope
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Examples in rank n = 3: the convex regular polyhedra
(=Platonic solids) and the Kepler-Poinsot star-polyhedra

Local data for both polyhedron Q and its group Aut(Q) reside in the
Schläfli symbol or type {p, q}.

Platonic solids: {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron),{5, 3} (dodecahedron)

Kepler (ca. 1619) {52 , 5} (small stellated dodecahedron),
{52 , 3} (great stellated dodecahedron)

Poinsot (ca. 1809) {5, 52} (great dodecahedron),
{3, 52} (great isosahedron)
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Regular polytopes and string C-groups

Egon (1982 - almost a child) showed that the abstract regular n-polytopes
P correspond exactly to the string C-groups of rank n (which we often
study in their place).

How? having fixed a base flag Φ in P, for 0 ≤ j ≤ n − 1 there is a unique
automorphism ρj ∈ Aut(P) mapping Φ to the j-adjacent flag Φj .
The axioms ⇒ these involutions generate Aut(P) and satisfy the relations
implicit in some string (Coxeter) diagram, like

• p1 • p2 • . . . •pn−1• ,

and perhaps other relations, so long as this intersection condition
continues to hold:

〈ρk : k ∈ I 〉 ∩ 〈ρk : k ∈ J〉 = 〈ρk : k ∈ I ∩ J〉

(for all I , J ⊆ {0, . . . , n − 1}).
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It’s a hard life we lead ...

To repeat: Aut(P) is a quotient of the Coxeter group with diagram

• p1 • p2 • . . . •pn−1•

We then say that the regular polytope P has Schläfli type {p1, . . . , pn−1}.

Those ‘other’ relations which induce this quotient can confound the
intersection condition.

Too much of my life has been spent fussing over that!
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Regular polytopes ↔ string C-groups

The Correspondence Theorem (Egon, 1982)

Part 1. If P is a regular n-polytope, then Aut(P) = 〈ρ0, . . . , ρn−1〉 is a
string C-group.

Part 2. Conversely, if A = 〈ρ0, . . . , ρn−1〉 is a string C-group, then we can
reconstruct an n-polytope P(A) (in a natural way as a
coset geometry on A).

Furthermore, Aut(P(A)) ' A and P(Aut(P)) ' P.

Barry Monson, University of New Brunswick, (from projects with L.Berman, D.Oliveros, and G.Williams) , GeoSym, Veszprém, 2015, (supported in part by NSERC)Just a Snip



Regularity is rare, despite its ubiquity

But most polytopes of rank n ≥ 3 are not regular.

Eg. The truncated tetrahedron Q,
although quite symmetrical, has
facets of two types (and 3 flag orbits
under the action of Aut(Q) ' S4).
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Now lift to covers ...

• Likewise, a map Q on a compact surface will not usually be regular.

• But it is well-known that Q is covered by a regular map P (usually on
some other surface).

• The regular cover P is unique (to isomorphism) if it covers Q
minimally.

• The proof is straightforward and works for any abstract 3-polytope
(e.g. if Q is a face-to-face tessellation of the plane). In fact,

Aut(P) ' Mon(Q), the monodromy group of Q .

• So it’s crucial that Mon(Q) is a string C-group when rank n = 3.

Skip these details, too?
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• So it’s crucial that Mon(Q) is a string C-group when rank n = 3.

Skip these details, too?
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Monodromy scrambles the flags of an n-polytope Q...

The diamond condition on Q amounts to this:

for each flag Φ and proper rank j (0 ≤ j ≤ n − 1) there exists a unique
flag Φj which is j-adjacent to Φ (means ...)

So rj : Φ 7→ Φj defines a fixed-point-free involution on the flag set F(Q).

Defn. The monodromy group Mon(Q) := 〈r0, . . . , rn−1〉

(a subgroup of the symmetric group acting on F(Q)).
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More on Mon(Q)

• encodes combinatorial essence of Q
• says much about how Q can be covered by an abstract regular

n-polytope P
• flag connectedness of Q ⇒ Mon(Q) transitive on F(Q)

• Mon(Q) is an sggi ( = string group generated by involutions):
rj and rk commute if |j − k | > 1

• Mon(Q) acts on F(Q) in a way contragredient to Aut(Q) :
for g ∈ Mon(Q), α ∈ Aut(Q), flag Φ ∈ F(Q)

(Φα)g = (Φg )α
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Let’s get back to an example.

Hartley and Williams (2009) determined the minimal regular cover P for
each classical (convex) Archimedean solid Q in E3.

Here the regular toroidal map P = {6, 3}(2,2) covers the truncated
tetrahedron Q.
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Recently, L. Berman, D. Oliveros, G. Williams and I

found

Theorem For n ≥ 2, let Mn = 〈r0, r1, . . . , rn−1〉 be the monodromy group
of the truncated n-simplex. Then
(a) Mn is a string C-group of type {6, 3, . . . , 3}.
(b) Mn is isomorphic to Sn+1 × Sn.
(c) A presentation for Mn comes from adjoining to the standard relations
for the Coxeter group with diagram • 6 • • · · · • • (on n nodes)
just one extra magic relation:

(r0r1r0r1r2)4 = e.

(for n ≥ 3). This relation is independent of rank.
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This means

(a) For n ≥ 1, the truncated n-simplex has an essentially unique minimal
regular cover Pn with n! (n + 1)! flags.

(b) For n ≥ 4, Pn is the universal regular polytope for facets of type Pn−1

and simplicial vertex-figures.

(c) Mn is a mix of the sort described in [ARP, 7A12].
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In fact ...

The regular polytope Pn with Aut(P) ' Sn+1 × Sn and Schläfli type
{6, 3, ..., 3} has surfaced before several times:

(a) its dual P∗
n was described by Egon as a regular incidence-polytope in

1985.

(b) P4 ' 3T 4
(2,2), a universal locally toroidal polytope described by Egon

and Peter in ARP (2002).

(c) it is the symmetric graphicahedron based on the complete bipartite
graph K1,n (= the n-star)
(Egon and Gabriela A-P., Maria D R-F., Mariana L-D., Deborah O.)
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Yet more regular polytopes, many of them new...

Aut(Pn) ' Sn+1 × Sn is a rich supply of subgroups which are themselves
string C-groups (see our paper in J. Algebr. Comb., 2015):

j Type Order Comments

0 {6, 3, . . . , 3} (n + 1)!n! Aut(Pn) to start
1 {3, 6, 3, . . . , 3} (n + 1)!(n − 1)!
j {3, . . . , 3, 6, 3, . . . , 3} (n + 1)!(n − j)!

n − 2 {3, . . . , 3, 6} (n + 1)!2!
n − 1 {3, . . . , 3, 3} (n + 1)! Sn+1, n-simplex

Project: reinterpret this construction using CPR graphs.
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And a more subtle class of related regular polytopes

Again Aut(Pn) ' Sn+1 × Sn. For 0 ≤ j ≤ n − 1, there is a subgroup
Wn(j) such that

• Wn(j) has index

(
n

j + 1

)
in Aut(Pn)

• Wn(j) ' Sn+1 × Sj+1 × Sn−j−1

• Wn(j) is a string C-group of type {3, . . . , 3, 6, 3, 6, 3, . . . , 3}
(first ‘6’ in the jth position)

• Wn(j) and Wn(n − j − 2) are isomorphic in dual fashion.

Note: actually Wn(0) has type {3, 6, 3, 3, . . . , 3}
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This relates to ...

a more general fact concerning certain Coxeter groups:

For p ≥ 2, the Coxeter group of rank n and diagram

• 2p • 3 • · · · • 3 •

has a subgroup of index

(
n

j + 1

)
which is isomorphic in turn to the

Coxeter group with diagram

• 3 • · · · • 3 •2p• p • 2p • 3 • · · · • 3 • ,

where the first “2p” labels the j th branch of the diagram.
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Is it known

when and in what circumstances a subset of n reflections in a Coxeter
group

W = 〈r0, . . . , rn〉

(of rank n), themselves generate a Coxeter group of rank n?

Note: Defn: here, a reflection in W is any conjugate of some rj . This
makes sense in the context of the standard linear representation of W .

Many thanks to our organizers!
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