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H. Poincaré (1882) attempted to describe a plane crystallographic group
in the Bolyai-Lobachevsky hyperbolic plane H? by appropriate fundamental
polygon. This initiative he extended also to space. B. N. Delone (Delaunay)
mm 1960°s refreshed this very hard topic for Euclidean space groups by the
so-called stereohedron problem: To give all fundamental domains for a given
space group; with few partial results.

A. M. Macbeath (1967) completed the initiative of H. Poincaré in clas-
sifying the 2-orbifolds by giving each with a signature. That 1s by a base
surface with orientable or non-orientable genus; by some singular points on 1it,
as rotational centers with given periods; by some boundary components, in
each with given dihedral corners. All these are characterized up to equivariant
1somorphism, also reported in this talk.
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Abstract — 2

There is a nice curvature formula that describes whether the above (good)
orbifold, i.e. cocompact plane group (with compact fundamental domain) is
realizable either in the sphere S?, or in the Euclidean plane E?, or in the
hyperbolic plane IH[Q, respectively.

Our 1nitiative in 1990’s was to combine the two above descriptions; namely,
how to give all the combinatorially different fundamental domains for any
above plane group. 7. Luci¢ and E. Molnar completed this by a graph-
theoretical tree enumeration algorithm. That time N. Vasiljevi¢ implemented
this algorithm to computer (program COMCLASS), of super-exponential com-
plexity, by certain new ideas as well. In the time of the Yugoslav war we lost
our manuscript, then the new one has been surprisingly rejected (7!).

Now we have refreshed our manuscript to submit again. Here you are
presented a report on it.
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Introduction — 1

Suppose that M is 2-dimensional, closed, compact manifold, with occasional
singular points and boundaries, i.e. M = II/G will be a good orbifold, as a
compact fundamental domain F of an isometry group &' acting discontinuously
on a classical plane II of constant curvature. The situation will be described
step-by-step 1n the following. We can consider M = F' as a polygon with side
pairing identifications. i.e. with piecewise linear (PL) presentation on the affine
plane A? (see [19]). By Macbeath’s signature (see [9]. [10]. [18] or [19])

where £ is + or —, and where g, h; (1 <i<I[)and h;; (1 <i<gq,1<j <)
are integers such that g > 0, h; > 2 and h;; > 2, we express that:

(i) If £ =+ and g > 0, then M is orientable surface of genus ¢, which means
that M is a connected sum of g tori (Figure l.a): if ¢ = 0, then M is

homeomorphic to a sphere; if £ = — and g > 0. then A 1s non-orientable
surface of genus g. which means that M 1s a connected sum of g projective
planes.
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Introduction — 2

(i) There are [ singular points on M, with periods hy, ha, . ... h;. If the

set of periods is empty, i.e. if [ | appears in a signature, then M has no
singular points.

(iii) There are ¢ disjoint closed (Jordan) curves 41,72, ..., 74 (called boundary

components) on M and l; (1 < i < q) dihedral points on the curve ~;, of
periods hi; (1 <i:<¢q,1<j<1I;). If ¢g=0 then {} denotes that there is
no boundary component.

Equivalent to the Macbheath’s signature is Conway’s orbifold  aotation (see

3] or [1]):
co...o hi,....,ht *xhir,....huy ... ¥hg,..., hg X X ... X,
either with ¢ initial circles which represent tori (for orientable case), or g final

crosses which represent projective planes (for non-orientable case). The absence
of circles and crosses obviously indicates that the base manifold M of the orbifold

M is a sphere.
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The orientable orbifold — Fig.1.a
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The non-orientable orbifold - Fig. 1.a

Signod: we €.
h"hl""'hm*hauhu.,---pt\cm ;
* hq,'h h

2% . h @9

g “" s

u’f’ +c Pérmutation of
rotational orclers,
7, bcundar:( COM—Ponen{—g,

/ 4, respectively
3

Y" Omn OA'H.J bou,nd.a.f‘tj COV“-P@V‘IQ-N-‘L';
up to o%clc c and
Feverse C-gclic. Perb;t,u't&i."a:bﬂ.

GEOSYM 2015 -- Veszprém




Orbifold trees and their fundamental domains — 1
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Orbifold trees and their fundamental domains — 2
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And vice versa

If & 1s finitely generated isometry group, with a fundamental domain £ =
I[I/G = M, which acts discontinuously on a complete, simply connected 2-
dimensional manifold II of constant curvature 0, +1 or —1 (i. e. Il is the Eu-
clidean plane E?, or the 2-sphere S?, or the Bolyai-Lobachevskian hyperbolic
plane H?), then a Macbeath’s signature may serve as a signature of G in order
to indicate the orientability (&) of II/G, its genus (g), the orders hq, ..., h; of

the rotation centers and the stabilizers of the orders 2h;; (1 <i<¢g,1<j < l;)
assoclated with the dihedral centers on the i-th boundary component.

Identifying points from the same orbit of G, by a covering map
keI —T/G, X X =X%,

we obtain a surface )7 = II/G which is a good orbifold [14, p. 87] (compact
surface) if all the rotation and dihedral centers of GG are of finite order.

At most points of IT the above map x is a local homeomorphism. This is not
at points with non-trivial stabilizers, hence, at the rotation centers and at the
points mapped onto the boundary of 7.

We give the well known necessary and sufficient conditions for topological
(homeomorphically equivariant) or geometrical isomorphism of planar discontin-
uous groups, where a topological mapping ¢ of II induces the group isomorphism
T:G =G g g = ¢ tgo (for the proof see [9] or [19, th. 4.6.3-4]).
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Equivariance of groups

Two plane discontinuous groups G and G’ are topologically isomorphic
(equivariant) if and only if:

(a)
(b)

(c)

The surfaces M = I1/G and M’ = I1/G’ are homeomorphic.

The numbers of the non-equivalent rotation centers are the same and the
orders of the rotations are the same. i.e. up to their permutation.

On each boundary curve ~; of M and ~; of M’. respectively, there is a

cycle of dihedral centers with corresponding mderb 2hi1.. ... 2hg,. It M
and M’ are orientable, then either both have the same cycles or all those
of M’ are inv erse to those of M. If M and M’ are non- orientable, then
the cycles of M may be put i bijective correspondence with those of M, VL
where image and pre-image may have the same or opposite orientation.

By a logical (formal) contraction of the ¢ boundary disks into ¢ singular

points of the compactsurface M . We obtain a compact surface M* without bound-
ary, with ¢ additional singular points and with the same rotation centers, genus
and orientability as the starting M.
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Fundamental polygon F

For a given plane discontinuous group & there is a sunply connected closed
set, called a fundamental domain of G, whose G-images cover II without any
interior point in common (see [19, p. 115]). Moreover, for a fundamental domain
of G may serve a generalized polygon. 1.e. a topological disk F' whose boundary
1s divided by a finite set of wvertices into plecewise linear sides. This polygon
we call a fundamental polygon. The sides of F are identified (or s-paired) by
isometries of IT which geometrically generate G. Generalized polygon F which
serves as a fundamental domain of . together with the set of identifications
defined by G, is said to be k-paired polygon of G. The vertices of F' (where at
least three G-images of F' meet) fall into GG-equivalence classes with G-conjugate
stabilizers such that the indicator function takes the same value on them.

If Y is a midpoint of an edge such that S(Gy) = 27, this point is (excep-
tionally) considered as a vertex of F', although only two G-images of F' meets
around Y. This is the point where our method differs from D-symbol method
given in [1] and [6].

If a line reflection appears as a generator in &, a side on that line 1s uniden-
tified and, because of that, this side appears on a boundary cycle of M.

In order to characterize polygons which serve as fundamental domains for
a given discontinuous group we give the following statement proved in [8] (see
Fig. 1.a. b, ¢, d).
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Theorem 1

Theorem 1 A k-paired polygon F' serves as a fundamental domain for a planar
discontinuous group G given by a Macbeath’s signature, if and only if k-images
of its sides form a graph C on a surface M = 11/ G with the following properties:

1.

0

Ft n

-~

S

M \C' is an open disk.

Graph C' can be contracted on the surface M with genus g into the graph
C' with one vertex of valence v = 2ag. and «ag loops (o = 2 of M s
orientable, o = 1 otherwise).

Each singular point R;., which s a r-image of a rotation center R;, is a

vertex of C' with valence v([R;) > 1.

Each subgraph C; of C' which belongs to the boundary component b; can be
contracted (as M — M* logical contraction indicated above ) to the point
Q; with valence v(Q;) > 1.

FEach vertex P of C', which is a rk-tmage of a vertexr P of F with trivial
stabilizer, has a valence at least 5. []

Two fundamental (or x-paired) polygons are said to be combinatorially equiv-
alent 1f there 1s a bijection mapping one onto the other which preserves the rela-
tion of incidence of vertices and edges. their cyclic order, and the G-equivalence
of vertices and the directed edges together with their stabilizers (see [7, p. 511]).
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Theorem 2
Theorem 2 Suppose that G is a finitely generated discontinuous isometry group
with a comact fundamental domain, acting on 11. Suppose further that G is given
with a fired good Macbeath’s signature, different from 4 types of bad orbifolds

[14. p. 87]

O L 1. 04 ), 2<u.
0,4+ [u,v]:{ }), (O,4+:] i {(u,v)}, 2<u<w,

when G does not erist, and different from three types

S =(0.4:[ {1 Sp=(L—=[ 1L D).

R = 0 +. [ ] { f111....5f11,§1)})_, 0 < [y,

with combinatorially unique fundamental domains. The set of all the combi-

natorially different polygons, which serve as fundamental domains for G, are
obtained by the following procedure:

(a) On M we determine the finite set (up to combinatorial equivalence) of all
the posqable non-contractible graphs with one verter and g loops (av = 2
z,f M is or ientable, o = 1 otherwise), such that for any C from that set,

JI\C 1s a disk.
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(0)

(c)

(d)

(¢)

(f)

Theorem 2 — cont.

To the graph C we let correspond a disconnected graph C" which consists
of ag disjoint paths belonging to the loops of C' (C' can be obtained by
cutting a small disk D on M around the added vertex, Figure 1.b).

We determine the finite set of all possible trees on M (in D), each of them
meets C" only at the set of its 2ag vertices (on the boundary of D). such
that the set of vertices of each of these trees consists of:

(i) 2ag vertices of C', each is of valence one.

(ii) | rotation centers Ry, ..., Ry.

(iii) Points Q, ... ,@Q obtained by contractions of the boundary compo-

nents of M.
(iv) Some additional points ?15?2 ..... P, on jf, cach 1s of valence at

least three, whence © < 2ag + 1+ q — 2.

We join each of these trees with ' and replace Q. . . ., @q by the boundary

components by. ..., by of M with dihedral centers on them as new vertices,

to obtain a new graph C'" on M.

To every disk M\C' we let correspond a polygon F which serves as a fun-
damental domain for G.

Among all the polygons F we select the combinatorially different ones. [
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Curvature formula

The inequality « < 2ag+1+g—2 (that was omitted in [8] but already mentioned
in [7]) is justified by the simple fact from graph theory that, for a tree, the
number of vertices of degree at least 3 1s at least two less than the number of
vertices of degree 1. which 1s In our case the sum of 2ag. and the number of
vertices of degree 1 among Ry..... Rg and Ql. e Qq_ which number is at most
[+q.

By comparing the angle sum of the polygon which serves as a fundamental
domain of the planar discontinuous group G, given by Macbheath’s signature,
with the angle sum of the corresponding Euclidean polygon, we conclude that

the group G is realizable as a group of isometries which acts discontinuously on
S%(<), in E%(=) or H?(>) if and only if

q Lj ]H[§
0_4—2ag—221—1/h —2¢ -3 ") (1 —1/hy). ]gg
=1 k=1

where o = 2 if M is orientable. &« = 1 otherwise.
We give sharp estimates for the number n of sides of a fundamental polygon
F obtained by the procedure described in Theorem 2 (see [7]):
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Theorem 3

Theorem 3 If n is the number of edges (and vertices) of an arbitrary funda-

mental polygon of finite area for a discontinuous group G given by its Macbeath’s
signature, different from the groups Sy, St and R with combinatorially unique

fundamental domains, then
Nmin E n g Nmax
where
Npin = 2ag i [ =q =0,
or
q
Nmin = go + Y _ Ik + 209 + 21 + 2¢ — 2

k=1
otheruise, and

q
Nmax = Y _ Ik + 6ag + 41+ 5¢ — 6,
k=1

where o« = 2 of M s orientable and o« = 1 otherwise, and qq is the number of
the boundary components of M containing no dihedral center. Moreover, for a
given G there exist fundamental domains with nymin and nymayx edges. L]
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Theorem 4

Theorem 4 For any given plane discontinuous group G of compact fundamen-
tal domain, qiven by its signature and described in Theorems 2 and 3, there are
finately many combinatorially different fundamental polygons. There exists an
algorithm that enumerates all fundamental polygons for a given signature of G.

L]
Remark:

We could think that the above procedure—based on the enumeration of graph
theoretical trees belonging to given 2ag+1+¢ fixed vertices and » < 2ag+1+q—2
additional vertices. each of valence at least 3 can be extended for infinite order
of rotation center and dihedral center. respectively.

Namely, in the Macbheath signature we could allow h; = oo (1 < i <) as
extended rotation center. an end in HZ? for a horocyclic rotation, or an ideal
point of two parallel line in E? for an Euclidean translation. Furthermore, we
could allow h;; = oo (1 <i<gqg,1<j <) as extended dihedral center with
parallel reflection lines in H? or an ideal point of two parallel reflection line in
the Euclidean plane E?. Moreover, to a boundary component could belong more
dihedral centers at the absolute of H? which will be contracted into a point in
our procedure.

As we see these extended centers cause some difference in the above proce-
dure to determine fundamental polygons for the above group . The difference
also appears in the metric realization of the corresponding fundamental domain

with 1deal vertices.
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Theorem 5

Theorem 5 [8, Prop. 3.2/ Among all convexr polygons in S* or in H? (resp.
in B2 ) with given angles aq, s, ..., cm,m > 3, there exists up to an isometry

(resp. similarity) respecting the order of angles, exactly one circumscribing a
circle. []

In Sec. 3 we will describe a particular algoritm which existence is stated
in Theorem 4. and which 1s based on the procedure from Theorem 2 and facts
from Theorem 3.

The computer implementation of that algoritm was done by the third au-
thor in his B.Sc. thesis [17]. The product of this implementation is program
COMCLASS (see section 4). The complexity of the procedure, which is clearly
super-exponential (observe that the number of labeled trees on n vertices is
n"™2, see [2]). will be discussed elsewhere (see e.g. [16]).

Particular problems have independently been solved in [1], [6], [10] and [16],
partially by different methods. This gives us an opportunity to illustrate some
of the steps in the procedure only by examples and figures.
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The Poincare-Delone (Delaunay) problem

Thus, a long standing problem of H. Poincaré and B.N. Delone (Delaunay)
has been completely solved in dimensions 2 by the theorems 2. — 5 . and
the algorithm described in the Section 3. Our procedure also completes the
classification of plane: discontinuous groups with fundamental domains of finite
area, finalized in [18], [9], [19]. Or, the corresponding 2-orbifolds have been
completely described [14].

Poincaré [15] initiated finding hyperbolic plane groups via finding their pos-
sible fundamental domains. Delone (see e.g. [4]) looked for the general stere-

ohedron problem. i.e. finding "all” combinatorial polyhedra (polytopes) which
can be fundamental domains of some discrete groups acting discontinuously on

a space of constant curvature (only particular cases are solved for dimensions
oreater than 2).

Our program is available in source code for on-line execution (see section
4). Its response is a list of all combinatorially different fundamental domains
(represented by canonized polygon descriptors list) for a group given by its
Macbeath’s signature.
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1. Different Archimedian tilings with the same
Schlafli-symbol (4, 4, 4, 6): 71 # 7,
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2. Different Archimedian tilings with the
same Schlafli-symbol (4, 4, 4, 6): 7 # 7,

b/
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The Euclidean plane group p6, a fundamental
domain and the group presentation
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Thank you for your kind attention!
©



