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From polyhedra to knots and links

Borromean Rings cone–manifold and Lambert cube

We start with a simple geometrical construction done by W. Thurston,
D. Sullivan and J. M. Montesinos.
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From polyhedra to knots and links

From the above consideration we get

Vol B(λ, µ, ν) = 8Vol L(
λ

2
,
µ

2
,
ν

2
).

Recall that B(λ, µ, ν) is
i) hyperbolic if 0 < λ, µ, ν < π (E. M. Andreev)
ii) Euclidean if λ = µ = ν = π

iii) spherical if π < λ, µ, ν < 3π, λ, µ, ν 6= 2π
(R. Diaz, D. Derevnin and M.)
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From polyhedra to knots and links

Volume calculation for L(α, β, γ). The main idea.
0. Existence

L(α, β, γ) :


0 < α, β, γ < π/2, H3

α = β = γ = π/2, E 3

π/2 < α, β, γ < π, S3.

1. Schläfli formula for V = Vol L(α, β, γ)

kdV =
1

2
(`αdα + `βdβ + `γdγ), k = ±1, 0

In particular in hyperbolic case:{
∂V
∂α = − `α

2 ,
∂V
∂β = − `β

2 ,
∂V
∂γ = − `γ

2 (∗)
V (π2 ,

π
2 ,

π
2 ) = 0. (∗∗)
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From polyhedra to knots and links

2. Trigonometrical and algebraic identities
(i) Tangent Rule

tanα

tanh `α
=

tanβ

tanh `β
=

tan γ

tanh `γ
= T (R.Kellerhals)

(ii) Sine-Cosine Rule (3 different cases)

sinα

sinh `α

sinβ

sinh `β

cos γ

cosh `γ
= 1 (Derevnin−Mednykh)

(iii)

T 2 − A2

1 + A2

T 2 − B2

1 + B2

T 2 − C 2

1 + C 2

1

T 2
= 1, (HLM,Topology′90)

where
A = tanα,B = tanβ,C = tan γ. Equivalently,
(T 2 + 1)(T 4 − (A2 + B2 + C 2 + 1)T 2 + A2B2C 2) = 0.
Remark. (ii) ⇒(i) and (i) & (ii) ⇒ (iii).
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From polyhedra to knots and links

3. Integral formula for volume
Hyperbolic volume of L(α, β, γ) is given by

W =
1

4

∞∫
T

log

(
t2 − A2

1 + A2

t2 − B2

1 + B2

t2 − C 2

1 + C 2

1

t2

)
dt

1 + t2
,

where T is a positive root of the integrant equation (iii).
Proof. By direct calculation and Tangent Rule (i) we have:

∂W

∂α
=
∂W

∂A

∂A

∂α
= −1

2
arctan

A

T
= −`α

2
.

In a similar way

∂W

∂β
= −

`β
2

and
∂W

∂γ
= −`γ

2
.

By convergence of the integral W (π2 ,
π
2 ,

π
2 ) = 0. Hence,

W = V = Vol L(α, β, γ).
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Geometry of two bridge knots and links

The Hopf link

The Hopf link 22
1 is the simplest two component link.

It has a few remarkable properties. First of all, the fundamental group
π1(S3\22

1) = Z2 is a free Abelian group of rank two. It makes us sure that
any finite covering of S3\22

1 is homeomorphic to S3\22
1 again. The second

property is that the orbifold 22
1(π, π) arises as a factor space by Z2-action

on the three dimensional projective space P3. That is, P3 is a two-fold
covering of the sphere S3 branched over the Hopf link. In turn, the sphere
S3 is a two-fold unbranched covering of the projective space P3.
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Geometry of two bridge knots and links

S
3

=

α

β

α

β

Fundamental polyhedron F(α, β) for the cone-manifold 22
1(α, β).
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Geometry of two bridge knots and links

Theorem 1
The Hopf link cone-manifold 22

1(α, β) is spherical for all positive α and β.
The spherical volume is given by the formula Vol (22

1(α, β)) = αβ
2 .

Proof. Let 0 < α, β 6 π. Consider a spherical tetrahedron T (α, β) with
dihedral angles α and β prescribed to the top and bottom edges and with
right angles prescribed to the remained ones. To obtain a cone-manifold
22

1(α, β) we identify the faces of tetrahedron by α- and β-rotations in the
respective edges. Hence, 22

1(α, β) is spherical and

Vol (22
1(α, β)) = Vol T (α, β) =

αβ

2
.

We note that T (α, β) is a union of n2 tetrahedra T (αn ,
β
n ). Hence, for

large positive α and β we also obtain

Vol (22
1(α, β)) = n2 ·Vol T (

α

n
,
β

n
) =

αβ

2
.
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Geometry of two bridge knots and links

The Trefoil

Let T (α) = 31(α) be a cone manifold whose underlying space is the
three-dimensional sphere S3 and singular set is Trefoil knot T with cone
angle α.

Since T is a toric knot by the Thurston theorem its complement
T (0) = S3 \ T in the S3 does not admit hyperbolic structure. We think
this is the reason why the simplest nontrivial knot came out of attention of
geometricians. However, it is well known that Trefoil knot admits geometric
structure. H. Seifert and C. Weber (1935) have shown that the spherical
space of dodecahedron (= Poincaré homology 3-sphere) is a cyclic 5-fold
covering of S3 branched over T .
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Geometry of two bridge knots and links. The Trefoil.

Topological structure and fundamental groups of cyclic n-fold coverings
have described by D. Rolfsen (1976) and A.J. Sieradsky (1986). In the case
T (2π/n) n ∈ N is a geometric orbifold, that is can be represented in the
form X3/Γ, where X3 is one of the eight three-dimensional homogeneous
geometries and Γ is a discrete group of isometries of X3. By Dunbar (1988)
classification of non-hyperbolic orbifolds has a spherical structure for n ≤ 5,
Nil for n = 6 and P̃SL(2,R) for n ≥ 7. Quite surprising situation appears
in the case of the Trefoil knot complement T (0). By P. Norbury (see
Appendix A in the lecture notes by W. P. Neumann (1999)) the manifold
T (0) admits two geometrical structures H2 × R and P̃SL(2,R).
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Geometry of two bridge knots and links. The Trefoil.

Theorem 2 (D. Derevnin, A. Mednykh and M. Mulazzani, 2008)

The Trefoil cone-manifold T (α) is spherical for π
3 < α < 5π

3 . The spherical
volume of T (α) is given by the formula

Vol (T (α)) =
(3α− π)2

12
.

Proof. Consider S3 as the unite sphere in the complex space C2 endowed
by the Riemannian metric

ds2
λ = |dz1|2 + |dz2|2 + λ(dz1dz2 + dz1dz2),

where λ = (2 sin α
2 )−1. Then S3 = (S3, ds2

λ) is the spherical space of
constant curvature +1.
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Geometry of two bridge knots and links. The Trefoil.

Then the fundamental set for T (α) is given by the following polyhedron

where E = e i α and F = e i
α−π

2 . The length `α of singular geodesic of T (α)
is given by `α = |P0P3|+ |P1P4| = 3α− π. By the Schläfli formula

dVol T (α) =
`α
2
dα =

3α− π
2

dα.

Hence,

Vol T (α) =
(3α− π)2

12
.
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Geometry of two bridge knots and links

Spherical structure on toric knots and links

The methods developed to prove Theorem 1 and Theorem 2 allowed to
establish similar results for infinite families of toric knots and links.
Consider the following cone–manifolds.

2n+1

α

T αn (   )

2n

α

β

T α,βn (       )

Alexander Mednykh () Geometry of knots 14 / 27



Geometry of two bridge knots and links

Theorem 3 (A. Kolpakov and M., 2009)
The cone-manifold Tn(α), n ≥ 1, admits a spherical structure for

2n − 1

2n + 1
π < α < 2π − 2n − 1

2n + 1
π

The length of the singular geodesics of Tn(α) is given by

lα = (2n + 1)α− (2n − 1)π.

The volume of Tn(α) is equal to

Vol Tn(α) =
1

2n + 1

(
2n + 1

2
α− 2n − 1

2
π

)2

.

Remark. The domain of the existence of a spherical metric in Theorem 3
was indicated earlier by J. Porti (2004).
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Geometry of two bridge knots and links

Theorem 4 (A. Kolpakov and M., 2009)
The cone-manifold Tn(α, β), n ≥ 2, admits a spherical structure if the
conditions

|α− β| < 2π − 2π

n
, |α + β − 2π| < 2π

n

are satisfied. The lengths of the singular geodesics of Tn(α, β) are equal to
each other and are given by the formula

lα = lβ =
α + β

2
n − (n − 1)π.

The volume of Tn(α) is equal to

Vol Tn(αβ) =
1

2n

(
α + β

2
n − (n − 1)π

)2

.
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Geometry of two bridge knots and links

The figure eight knot 41

It was shown in Thurston lectures notes that the figure eight compliment
S3 \ 41 can be obtained by gluing two copies of a regular ideal tetrahedron.
Thus, S3 \ 41 admits a complete hyperbolic structure. Later, it was
discovered by A. C. Kim, H. Helling and J. Mennicke that the n− fold
cyclic coverings of the 3-sphere branched over 41 produce beautiful
examples of the hyperbolic Fibonacci manifolds. Theirs numerous
properties were investigated by many authors. 3-dimensional manifold
obtained by Dehn surgery on the figure eight compliment were described by
W. P. Thurston. The geometrical structures on these manifolds were
investigated in Ph.D. thesis by C. Hodgson.
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Geometry of two bridge knots and links. 41– knot.

The following result takes a place due to Thurston, Kojima, Hilden,
Lozano, Montesinos, Rasskazov and M..

Theorem 5
A cone-manifold 41(α) is hyperbolic for 0 ≤ α < α0 = 2π

3 , Euclidean for
α = α0 and spherical for α0 < α < 2π − α0.

Other geometries on the figure eight cone-manifold were studied by
C. Hodgson, W. Dunbar, E. Molnar, J. Szirmai and A. Vesnin.
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Geometry of two bridge knots and links. 41– knot.

The volume of the figure eight cone-manifold in the spaces of constant
curvature is given by the following theorem.

Theorem 6 (A. Rasskazov and M., 2006)
Let V(α) = Vol 41(α) and `α is the length of singular geodesic of 41(α).
Then

(H3) V(α) =
∫ α0

α arccosh (1 + cos θ − cos 2θ)dθ, 0 ≤ α < α0 = 2π
3 ,

(E3) V(α0) =
√

3
108 `

3
α0
,

(S3) V(α) =
∫ α
α0

arccos (1 + cos θ − cos 2θ)dθ, α0 < α ≤ π, V(π) = π2

5 ,

V(α) = 2V(π)−V(2π − α), π ≤ α < 2π − α0.
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Geometry of two bridge knots and links

The 52 knot

The knot 52 is a rational knot of a slope 7/2.

Historically, it was the first knot which was related with hyperbolic
geometry. Indeed, it has appeared as a singular set of the hyperbolic
orbifold constructed by L.A. Best (1971) from a few copies of Lannér
tetrahedra with Coxeter scheme ◦ ≡ ◦ − ◦ = ◦. The fundamental set of
this orbifold is a regular hyperbolic cube with dihedral angle 2π/5. Later,
R. Riley (1979) discovered the existence of a complete hyperbolic structure
on the complement of 52. In his time, it was one of the nine known
examples of knots with hyperbolic complement.
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Geometry of two bridge knots and links. 52– knot.

A few years later, it has been proved by W. Thurston that all non-satellite,
non-toric prime knots possess this property. Just recently it became known
(2007) that the Weeks-Fomenko-Matveev manifoldM1 of volume
0.9427... is the smallest among all closed orientable hyperbolic three
manifolds. We note thatM1 was independently found by J. Przytycki and
his collaborators (1986). It was proved by A. Vesnin and M. (1998) that
manifoldM1 is a cyclic three fold covering of the sphere S3 branched over
the knot 52. It was shown by J. Weeks computer program Snappea and
proved by Moto-O Takahahsi (1989) that the complement S3 \ 52 is a
union of three congruent ideal hyperbolic tetrahedra.
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Geometry of two bridge knots and links. 52– knot.

The next theorem has been proved by A. Rasskazov and M. (2002), R.
Shmatkov (2003) and J. Porti (2004) for hyperbolic, Euclidian and
spherical cases, respectively.

Theorem 7
A cone manifold 52(α) is hyperbolic for 0 ≤ α < α0, Euclidean for α = α0,
and spherical for α0 < α < 2π − α0, where α0 ' 2.40717 is a root of the
equation

−11− 24 cos(α) + 22 cos(2α)− 12 cos(3α) + 2 cos(4α) = 0.

Alexander Mednykh () Geometry of knots 22 / 27



Geometry of two bridge knots and links. 52– knot.

Theorem 8 (A. Mednykh, 2009)
Let 52(α), 0 ≤ α < α0 be a hyperbolic cone-manifold. Then the volume of
52(α) is given by the formula

Vol (52(α)) = i

∫ z

z̄
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(1 + ζ)2

]
dζ

ζ2 − 1
,

where A = cot α2 and z , =z > 0 is a root of equation

8(z2 + A2) = (1 + A2)(1− z)(1 + z)2.

A new and completely different approach to find volume of the above
cone-manifold is contained in our resent paper (Ji-Young Ham, Alexander
Mednykh, Vladimir Petrov, 2014).
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Geometry of twist links

The Whitehead link 52
1

The ten smallest closed hyperbolic 3− manifolds can be obtained as the
result of Dehn surgery on components of the Whitehead link (P. Milley,
2009). All of them are two-fold coverings of the 3− sphere branched over
some knots and links (A. Vesnin and M., 1998).
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The Whitehead link.

Theorem 9 (A. Vesnin and M., 2002)
Let W (α, β) be a hyperbolic Whitehead link cone-manifold. Then the
volume of W (α, β) is given by the formula

i

∫ z

z
log

(
2(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ2 − ζ3)

)
dζ

ζ2 − 1
,

where A = cot α2 , B = cot β2 and z , =(z) > 0 is a root of the equation

2(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z2 − z3).

A similar result as valid also in spherical geometry. The Euclidean volume
of W (α, β) was calculated by R. Shmatkov, 2003.
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Geometry of the twist links.

The Twist link 62
3

Theorem 10 (D. Derevnin, M Mulazzani and M., 2004)

Let 62
3(α, β) be a hyperbolic cone-manifold. Then the volume of 62

3(α, β)
is given by the formula

i

∫ z

z
log

[
4(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ − ζ2)2

]
dζ

ζ2 − 1
.

where A = cot α2 , B = cot β2 , and z , =(z) > 0 is a root of the equation

4(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z − z2)2.
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Geometry of knots and links

The volumes of more complicated twist links are obtained in our recent
joint work with Koya Shimokawa, Saitama University and Yokota Yoshiyuki,
Tokyo Metropolitan University (2015). Consider the Stevedore knot 61.
Then we have

Theorem
The volume of the hyperbolic cone-manifold 61(α) is given by integral

i

∫ z

z
log

[
8(ζ2 + A2)

(1 + A2)(1− ζ)(2 + ζ + ζ2 − (1− ζ)
√

2 + 2ζ + ζ2)

]
dζ

ζ2 − 1
,

where A = cot α2 and z and z are complex conjugated roots of the
integrand.
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