Results and Problems from Minkowski Geometry

Horst Martini (TU Chemnitz)
Joint work with V. Boltyanski, M. Lassak, M. Spirova,
K. J. Swanepoel, and Senlin Wu

$$
\text { July 2, } 2015
$$

Minkowski Geometry

Philosophy is a game with aims, but without rules. Mathematics is a game with rules, but without aims. Ian Ellis

Minkowski Geometry is the geometry of finite dimensional real Banach spaces (= Minkowski spaces)

Minkowski Geometry

Philosophy is a game with aims, but without rules. Mathematics is a game with rules, but without aims. Ian Ellis

Minkowski Geometry is the geometry of finite dimensional real Banach spaces (= Minkowski spaces)

Historical origins:

- B. Riemann (1868): ℓ_{4}-norm
- H. Minkowski (1896): axiomatic approach
- D. Hilbert (~ 1900): 4th Hilbert problem
- St. Banach, H. Busemann, V. Klee, Br. Grünbaum, ...

Discrete \& Computational Geometry 0000000000 000

Curve Theory 000000
5.4 The isoperimetrices that arise from Examples 5.1.4

153

(i)

(ii)

(iii)

Figure 5.3b, (i) The ball B, (ii) the intersestion body $/(B)$ and (iii) the isoperimetrix $\mathbf{I}(B)=(I(B))^{\circ}$ in the case when B is a cube.

 when B is a cube.

Discrete \& Computational Geometry 0000000000 000

Curve Theory 000000 0

(iii)

Figure 5.4d. (i) The hall B, (ii) the dual hall B° and (iii) the isoperimetrix $\mathbf{I}(B)=\Pi\left(B^{\circ}\right)$ in the case when B is a cylinder. Note that in this case $\mathbf{I}(B)$ is the solid of revolution of the cosine curve; see Chilton and Coxeter [110] and [262]

Connections

Today

Revitalization within "other" research fields, such as

- Computational Geometry
- Discrete Geometry
- Functional Analysis
- Optimization (Location Science, ...)
- Convex Analysis
- non-Euclidean geometries in general

Motivation

- direction-dependent phenomena (e.g., in Physics), such as crystal growth, whiskers, etc.
- Geometry of Numbers (lattice point problems)
- Location Science with non-Euclidean road systems

The topic of Pure Physics is the development of the rules of the understandable world. The topic of Pure Mathematics is the development of the rules of the human intelligence. J.J. Sylvester

Concept

$\mathbb{M}^{d}=\left(\mathbb{R}^{d},\|\cdot\|\right) \quad \ldots d$-dimensional Minkowski space unit ball B of \mathbb{M}^{d}... convex body centered at the origin $\|\cdot\| \quad \ldots$ norm induced by B :

$$
\forall x \in \mathbb{R}^{d}:\|x\|=\min \{\lambda \geq 0: x \in \lambda B\}
$$

1. Minkowski Geometry and Convexity

- H. Minkowski (1896): Geometry of numbers
- St. Banach (early 20's): Foundations of Functional Analysis
- H. Busemann (since 40's): Finsler Geometry
- M.M. Day, R.C. James, D. Amir et al. (since 40's): finite dimensional Banach Space Theory

1. Minkowski Geometry and Convexity

- H. Minkowski (1896): Geometry of numbers
- St. Banach (early 20's): Foundations of Functional Analysis
- H. Busemann (since 40's): Finsler Geometry
- M.M. Day, R.C. James, D. Amir et al. (since 40's): finite dimensional Banach Space Theory
- H.G. Eggleston, C.M. Petty, Br. Grünbaum, V. Klee, G.D. Chakerian, K. Leichtweiss, . . . (since 50's): Convex Geometry
- H. Groemer, R. Schneider, K. Ball, A.C. Thompson, ... (since 80's): Convex Geometry

1.1. Partial fields

- special norms (ellipsoids, ℓ_{p}-norms, zonoids, polytopes, \ldots)
- special types of convex bodies studied in normed spaces (complete sets, bodies of constant width, reduced bodies, ball polytopes, ...)
- projection bodies and intersection bodies (isoperimetric problem)
- concepts of area and content (e.g., Holmes-Thompson area)

1.2. Reduced bodies in \mathbb{M}^{d}

Poetry is the art of giving different names to the same thing; Math is the art of giving the same name to different things. Henri Poincaré

K ... compact set in \mathbb{M}^{d}
$\operatorname{diam}(K) \quad \ldots$ maximal width $=$ diameter of K
$\Delta(K) \quad \ldots$ minimal width $=$ thickness of K

1.2. Reduced bodies in \mathbb{M}^{d}

> Poetry is the art of giving different names to the same thing; Math is the art of giving the same name to different things. Henri Poincaré

K ...compact set in \mathbb{M}^{d} $\operatorname{diam}(K) \quad \ldots$ maximal width $=$ diameter of K $\Delta(K) \quad \ldots$ minimal width $=$ thickness of K

Definition 1.1
A convex body $C \subset \mathbb{M}^{d}$ is said to be complete if $\operatorname{diam}(K)>\operatorname{diam}(C)$ for any compact set K with $C \varsubsetneqq K$.

Definition 1.2
A convex body $R \subset \mathbb{M}^{d}$ is said to be reduced if $\Delta(K)<\Delta(R)$ for any convex body K with $K \varsubsetneqq R$.

Euclidean space \mathbb{R}^{d}

complete $=$ constant width

reduced

Euclidean space \mathbb{R}^{d}

complete $=$ constant width

- Are there reduced polytopes in $\mathbb{R}^{d}, d \geq 3$?
- Is a strictly convex reduced body in $\mathbb{R}^{d}, d \geq 3$, necessarily of constant width?

Euclidean space \mathbb{R}^{d}

- Which convex body $R \subset \mathbb{R}^{d}, d \geq 3$, of thickness $\Delta(R)=1$ has minimal volume?

Minkowski space \mathbb{M}^{d}

Minkowski space \mathbb{M}^{d}

Some results

Let R be a reduced body in $\mathbb{M}^{d}, d \geq 2$.
R centrally symmetric $\Leftrightarrow R$ and B are homothets

$$
R \text { smooth } \Leftrightarrow R \text { of constant width }
$$

No R is smooth $\Leftarrow B$ is not smooth

Some results

Any R is representable as homothet $\Leftarrow B=\operatorname{conv}\left\{ \pm b_{1}, \ldots, \pm b_{m}\right\}$ of $\operatorname{conv}\left\{t_{1}+\left[o, b_{1}\right], \ldots, t_{m}+\left[o, b_{m}\right]\right\}$ is a polytope

Results in the Minkowski plane

for $d=2$:

- For every reduced body $R \subset \mathbb{M}^{2}$ we have $\frac{\operatorname{diam}(R)}{\Delta(R)} \leq 2$.

- Every strictly convex reduced body $R \subset \mathbb{M}^{2}$ is of constant width.

The basic principle of modern Mathematics is to achieve a complete fusion of "geometric" and "analytic" ideas. J.A.E. Dieudonné

Results in the Minkowski plane

- The boundary of every reduced body $R \subset \mathbb{M}^{2}$ is the union of all arms of butterflies of R and all endpoints of thickness chords of R.

Results in the Minkowski plane

- A triangle in a normed plane is reduced iff it is equilateral in the respective antinorm (whose unit ball is the dual of B rotated by 90°). (\longrightarrow Fermat-Torricelli problem, Steiner minimum trees)
- The perimeter of every planar reduced body R satisfies $\operatorname{per}(R) \geq \pi \cdot \Delta(R)$, with equality iff R is of constant width. $(\operatorname{per}(R)>\pi \cdot \Delta(R)$ if R is a polygon.)

Minkowski space \mathbb{M}^{d}

Minkowski space \mathbb{M}^{d}

Problems:

- Do there exist normed spaces in which the balls are the only reduced bodies?
- In which normed spaces is any reduced body also complete, or even of constant width?
- Do there exist normed spaces $\mathbb{M}^{d}, d \geq 3$, in which there are no reduced polytopes?

Minkowski space \mathbb{M}^{d}

- Which convex bodies of thickness 1 have minimal volume (for any \mathbb{M}^{d})?
- Since completeness is not equivalent to constant width in Minkowski spaces, there are also complete sets which are not reduced for $d \geq 3$.

Minkowski space \mathbb{M}^{d}

\Rightarrow Give a complete Venn diagram representation of the families of reduced, complete and constant with bodies in $\mathbb{M}^{d}, d \geq 3$.

The art of doing Mathematics consists in finding that special case which contains all the germs of generality. David Hilbert

Conjecture

In any normed space $\mathbb{M}^{d}, d \geq 3$, there exist reduced bodies R with $\Delta(R)=1$ having arbitrarily large diameter!

Everything that is only likely is most likely wrong! René Descartes

2. Discrete \& Computational Geometry in normed spaces

In the great garden of Geometry, everyone can pick up a bunch of flowers, simply following his taste. David Hilbert

- H. Minkowski (1896): Geometry of numbers
- H. Hadwiger, V. Boltyanski, L. Fejes Tóth, B. Grünbaum, V. Klee et al. (since 60's): packings \& coverings, circum- and inballs, Borsuk numbers

2. Discrete \& Computational Geometry in normed spaces

> In the great garden of Geometry, everyone can pick up a bunch of flowers, simply following his taste. David Hilbert

- H. Minkowski (1896): Geometry of numbers
- H. Hadwiger, V. Boltyanski, L. Fejes Tóth, B. Grünbaum, V. Klee et al. (since 60's): packings \& coverings, circum- and inballs, Borsuk numbers
- R. Klein, F. Aurenhammer, F. Santos et al. (since 90's): bisectors and Voronoi diagrams, geometric dilation, ...
- V. Klee, P. Gritzmann (since 90's): Computational Convexity
- today: Chebyshev sets (also computationally), minmax and minsum location problems, ball operators, ...

2.1. The Fermat-Torricelli problem in \mathbb{M}^{d}

$$
\begin{aligned}
& \text { Women demand what is impossible: we should forget their } \\
& \text { age, but not their birthday! Karl Farkas }
\end{aligned}
$$

\mathbb{E}^{d} : P. de Fermat (1638), E. Torricelli (1640)
Given an arbitrary finite point set $\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{E}^{d}$, find the (unique) point $x_{\min } \in \mathbb{E}^{d}$ for which

$$
f(x)=\sum_{i=1}^{m}\left\|x_{i}-x\right\|, x \in \mathbb{E}^{d}
$$

is minimal!

- unique solution in the

$$
\begin{gathered}
\text { floating case } \\
m=5
\end{gathered}
$$

$m=4$

- $x_{4}=x_{\text {min }}$
- unique solution in the

$$
\begin{gathered}
\text { floating case } \\
m=5
\end{gathered}
$$

absorbed case $m=4$

$$
\text { - } x_{4}=x_{\min }
$$

- $m \geq 5$: no exact ruler-and-compass construction (via Galois theory)
- level curves of $f(x)$: multifocal ellipses etc.

First important tool for \mathbb{M}^{d}

d-segment from x to $y, x, y \in \mathbb{M}^{d}$:

$$
[x, y]_{d}:=\left\{z \in \mathbb{M}^{d}:\|x-z\|+\|z-y\|=\|x-y\|\right\}
$$

First important tool for \mathbb{M}^{d}

d-segment from x to $y, x, y \in \mathbb{M}^{d}$:

$$
[x, y]_{d}:=\left\{z \in \mathbb{M}^{d}:\|x-z\|+\|z-y\|=\|x-y\|\right\}
$$

Second important tool for \mathbb{M}^{d}

The norming functional of $x \in \mathbb{M}^{d}$ is a $\phi \in\left(\mathbb{M}^{d}\right)^{*}$ such that the dual norm $\|\phi\|=\max _{\|x\|=1} \phi(x)=1$ and $\phi(x)=\|x\|$. The hyperplane $\phi^{-1}(1)=\left\{y \in \mathbb{M}^{d}: \phi(y)=1\right\}$ is then the supporting hyperplane of B at x.
$\Rightarrow \mathbb{M}^{d}$ is smooth \Leftrightarrow Each $x \neq 0$ has a unique norming functional.

Second important tool for \mathbb{M}^{d}

The norming functional of $x \in \mathbb{M}^{d}$ is a $\phi \in\left(\mathbb{M}^{d}\right)^{*}$ such that the dual norm $\|\phi\|=\max _{\|x\|=1} \phi(x)=1$ and $\phi(x)=\|x\|$. The hyperplane $\phi^{-1}(1)=\left\{y \in \mathbb{M}^{d}: \phi(y)=1\right\}$ is then the supporting hyperplane of B at x.
$\Rightarrow \mathbb{M}^{d}$ is smooth \Leftrightarrow Each $x \neq 0$ has a unique norming functional.

Definition 2.1
The set of all $x_{0} \in \mathbb{M}^{d}$ minimizing $\sum_{i=1}^{m}\left\|x-x_{i}\right\|, x \in \mathbb{M}^{d}$, is called the Fermat-Torricelli locus $F T\left\{x_{1}, \ldots, x_{m}\right\}$ of $\left\{x_{1}, \ldots, x_{m}\right\}$.

Theorem 2.1
Let $X:=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \subset \mathbb{M}^{d}$ be given arbitrarily.

1. If $x_{0} \neq x_{1}, \ldots, x_{m}$, then $X \backslash\left\{x_{0}\right\}$ is a floating FT configuration with respect to x_{0} iff each $x_{i}-x_{0}$ has a norming functional ϕ_{i} such that

$$
\sum_{i=1}^{m} \phi_{i}=o
$$

2. If $x_{0}=x_{j}$ for some $j \in\{1, \ldots, m\}$, then $X \backslash\left\{x_{0}\right\}$ is an absorbing FT configuration with respect to x_{0} iff each $x_{i}-x_{0}(i \neq j)$ has a norming functional ϕ_{i} such that

$$
\left\|\sum_{i=1}^{m} \phi_{i}\right\| \leq 1 \text { for } i \neq j
$$

Given a functional $\phi \in\left(\mathbb{M}^{d}\right)^{*}$ of norm 1 and some $x \in \mathbb{M}^{d}$. Define the cone

$$
C(x, \phi)=x-\{a: \phi(a)=\|a\|\} .
$$

Thus, $C(x, \phi)$ is the translate by x of the union of all rays from o through the exposed face of $\phi^{-1}(-1) \cap B$.

Theorem 2.2
For any \mathbb{M}^{d}, let $p \in F T\left\{x_{1}, \ldots, x_{m}\right\} \backslash\left\{x_{1}, \ldots, x_{m}\right\}$, and with ϕ_{i} as norming functional of $x_{i}-p$ let $\sum_{i=1}^{m} \phi_{i}=0$. Then

$$
F T\left\{x_{1}, \ldots, x_{m}\right\}=\bigcap_{i=1}^{m} C\left(x_{i}, \phi_{i}\right)
$$

Theorem 2.2
For any \mathbb{M}^{d}, let $p \in F T\left\{x_{1}, \ldots, x_{m}\right\} \backslash\left\{x_{1}, \ldots, x_{m}\right\}$, and with ϕ_{i} as norming functional of $x_{i}-p$ let $\sum_{i=1}^{m} \phi_{i}=0$. Then

$$
F T\left\{x_{1}, \ldots, x_{m}\right\}=\bigcap_{i=1}^{m} C\left(x_{i}, \phi_{i}\right)
$$

Corollary 2.1

If $\left\{x_{1}, \ldots, x_{2 k}\right\}$ can be matched up to form $k d$-segments $\left[x_{i}, x_{k+i}\right]_{d}, i=1, \ldots, k$, with non-empty intersection, then

$$
F T\left\{x_{1}, \ldots, x_{2 k}\right\}=\bigcap_{i=1}^{k}\left[x_{i}, x_{k+i}\right]_{d}
$$

Examples

$F T(A)=\operatorname{conv}(A)$ is possible in the maximum norm.

Three non-disjoint d-segments create $F T(A)$.

Theorem 2.3
For any $A \subset \mathbb{M}^{d}$ we have $\left|A \cap F T(A) \leq 2^{d}\right|$. Equality holds iff \mathbb{M}^{d} is isometric to ℓ_{1}^{d}, with $A \cap F T(A)$ corresponding to a homothet of the Hamming cube $\{0,1\}^{d}$.

2.2. Universal covers in normed planes

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

- $p \in \mathbb{M}^{2}$ is Birkhoff orthogonal to $q \in \mathbb{M}^{2}$ if, for any $\lambda \in \mathbb{R},\|p\| \leq\|p+\lambda q\|$ holds (not symmetric!)

2.2. Universal covers in normed planes

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

- $p \in \mathbb{M}^{2}$ is Birkhoff orthogonal to $q \in \mathbb{M}^{2}$ if, for any $\lambda \in \mathbb{R},\|p\| \leq\|p+\lambda q\|$ holds (not symmetric!)
- Busemann (1947): For any $\|\cdot\|$, there is an antinorm $\|\cdot\|_{a}$ such that q is Birkhoff orthogonal to p with respect to $\|\cdot\|_{a}$
- the unit circle C_{a} of $\|\cdot\|_{a}$ is the isoperimetrix of $\|\cdot\|$
- if C and C_{a} are homothetic, then \mathbb{M}^{2} is a Radon plane
- if follows that Birkhoff orthogonality is symmetric iff \mathbb{M}^{2} is a Radon plane

Definition 2.2 (Lebesgue, 1914)
A set of smallest area containing a congruent (translative) copy of any planar set of diameter 1 is said to be a universal cover (strong universal cover).

Definition 2.2 (Lebesgue, 1914)
A set of smallest area containing a congruent (translative) copy of any planar set of diameter 1 is said to be a universal cover (strong universal cover).

Lemma 2.1
Every planar set of diameter 1 is contained in some planar set of constant width 1.

Theorem 2.4
In any normed plane, an anti-regular hexagon circumscribed about a circle of diameter 1 is a strong universal cover.

Theorem 2.5
In any normed plane, an anti-regular triangle circumscribed about a circle of diameter 1 is a strong universal cover.

Theorem 2.4
In any normed plane, an anti-regular hexagon circumscribed about a circle of diameter 1 is a strong universal cover.

Theorem 2.5
In any normed plane, an anti-regular triangle circumscribed about a circle of diameter 1 is a strong universal cover.

Theorem 2.6
In any normed plane, there is a square of side length 1 which is a strong universal cover. If any such square is a strong universal cover, then the plane is a Radon plane.
Problem: Find more geometric figures which are universal covers in any normed plane (or large norm classes), also in higher dimensions!

3. Some curve theory in normed planes

Everyone knows what a curve is, until he has studied enough Mathematics to become confused through the countless number of possible exceptions.

Felix Klein

3. Some curve theory in normed planes

- C.M. Petty, H. Guggenheimer (50's): Frenet formulas, involutes \& evolutes, 4-vertex-theorem
- S. Tabachnikov, M. Ghandehari (90's): Minkowskian caustics, curvature functions
- R. Ait-Haddou et al. (2000): applications in CAD (freeform curve design etc.)

Euclidean multifocal ellipses

3.1. Cassini curves in normed planes

... locus of all points in \mathbb{E}^{2} whose product of distances to two given points (foci) is constant

3.1. Cassini curves in normed planes

... locus of all points in \mathbb{E}^{2} whose product of distances to two given points (foci) is constant

G.D. Cassini (1680): proposed these curves (in opposition to J. Kepler) as planetary orbits

Geometry is knowledge of the eternally existent. Pythagoras

Definitions

The point set

$$
C(o, 2 x, c):=\left\{z \in \mathbb{M}^{2}:\|z\| \cdot\|z-2 x\|=c\right\}
$$

is called the Cassini curve with foci $o, 2 x$ and of size $c>0$.

Definitions

The point set

$$
C(o, 2 x, c):=\left\{z \in \mathbb{M}^{2}:\|z\| \cdot\|z-2 x\|=c\right\}
$$

is called the Cassini curve with foci $o, 2 x$ and of size $c>0$. Furthermore, $B(-x, x):=\left\{y \in \mathbb{M}^{2}:\|y-(-x)\|=\|y-x\|\right\}$ is called the bisector of $\operatorname{conv}\{-x, x\},-x \neq x$, and we introduce

$$
H_{-x, x}^{\mp}:=\left\{y \in \mathbb{M}^{2}:\|y-(-x)\| \leq\|y-x\|\right\} .
$$

Theorem 3.1
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ and $c>0$ the set $C(o, 2 x, c) \cap B(o, 2 x)$ is symmetric with respect to x, and it is the union of two (possibly degenerate) segments.

Theorem 3.1
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ and $c>0$ the set $C(o, 2 x, c) \cap B(o, 2 x)$ is symmetric with respect to x, and it is the union of two (possibly degenerate) segments.

Theorem 3.2
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ and $0<c<1, C(o, 2 x, c)$ is the union of two disjoint closed curves which bound two disjoint star-shaped sets.

Theorem 3.3
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ each of the two sets $C(o, 2 x, 1) \cap H_{o, 2 x}^{\mp}$ is a closed curve, and we have

$$
\emptyset \neq\left(C(o, 2 x, 1) \cap H_{o, 2 x}^{-}\right) \cap\left(C(o, 2 x, 1) \cap H_{o, 2 x}^{+}\right) \subset B(o, 2 x) .
$$

In general, this set may contain infinitely many points. \mathbb{M}^{2} is strictly convex if this set is a singleton for each unit vector.

Theorem 3.3
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ each of the two sets $C(o, 2 x, 1) \cap H_{o, 2 x}^{\mp}$ is a closed curve, and we have

$$
\emptyset \neq\left(C(o, 2 x, 1) \cap H_{o, 2 x}^{-}\right) \cap\left(C(o, 2 x, 1) \cap H_{o, 2 x}^{+}\right) \subset B(o, 2 x) .
$$

In general, this set may contain infinitely many points. \mathbb{M}^{2} is strictly convex if this set is a singleton for each unit vector.

Theorem 3.4
For $x \in \mathbb{M}^{2}$ with $\|x\|=1$ and $c>1$, then $C(o, 2 x, c)$ is a simple closed curve symmetric with respect to x.

Remark 3.1
One can construct normed planes such that the region bounded by $C(o, 2 x, c)$ is not convex for any $c \geq 1$.

Remark 3.1

One can construct normed planes such that the region bounded by $C(o, 2 x, c)$ is not convex for any $c \geq 1$.
Observation: In the literature, multifocal Cassini curves were never studied for normed planes, although for the Euclidean norm they are very popular (e.g., as so-called n-lemniscates).

3.2. Other classes of curves in normed planes

- not much is known about conic sections (different definitions can describe different classes of curves)
3.2. Other classes of curves in normed planes
- not much is known about conic sections (different definitions can describe different classes of curves)
- the geometry of circles is not satisfactorily developed
- Radon curves and equiframed curves as tools

3.2. Other classes of curves in normed planes

- not much is known about conic sections (different definitions can describe different classes of curves)
- the geometry of circles is not satisfactorily developed
- Radon curves and equiframed curves as tools
- (almost) nothing is known about further individual curve classes in normed planes !!

4. Elementary Geometry in Minkowski spaces

How to prove something we learn in Elementary Geometry!

- S. Gołab, D. Laugwitz (since 30's): "Minkowskian π "
- L. Tamassy, Br. Grünbaum (since 60 's): extensions to gauges, Feuerbach circle, 3-circles-theorem, ...
- L.M. Kelly, I.M. Yaglom, J.J. Schäffer: re-entrant property, polygons inscribed in Jordan curves, circle geometry, ...
- today: many theorems from \mathbb{E}^{2} were never generalized

A triangle with a non-unique circumcircle (smooth norm) and a triangle without circumcircle (strictly convex norm)

Without Geometry, life would be pointless!

A triangle with three and a triangle with only two excircles

Some results

It is the enjoyment of shape in a higher sense that makes the geometer.

Theorem 4.1
Let p_{1}, p_{2}, p_{3} be three distinct points on the unit circle C of a strictly convex normed plane, and let $x_{i}+C(i=1,2,3)$ be three circles different from C, each containing two points p_{i}. Then 3
$\bigcap\left(x_{j}+C\right)$ consists of precisely one point p.
$j=1$

Some results

It is the enjoyment of shape in a higher sense that makes the geometer. Alfred Clebsch

Theorem 4.1
Let p_{1}, p_{2}, p_{3} be three distinct points on the unit circle C of a strictly convex normed plane, and let $x_{i}+C(i=1,2,3)$ be three circles different from C, each containing two points p_{i}. Then 3
$\bigcap\left(x_{j}+C\right)$ consists of precisely one point p.
$j=1$
Definition 4.1
The point p is called the C-orthocenter of the triangle $p_{1} p_{2} p_{3}$ since $p-p_{i}$ is James orthogonal to $p_{j}-p_{k}(\{1,2,3\}=\{i, j, k\})$, i.e., $\left\|\left(p-p_{i}\right)+\left(p_{j}-p_{k}\right)\right\|=\left\|\left(p-p_{i}\right)-\left(p_{j}-p_{k}\right)\right\|$.

Some results

Some results

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things. Isaac Newton

Theorem 4.2
In this situation, the quadruples $\left\{p, p_{1}, p_{2}, p_{3}\right\}$ and $\left\{o, x_{1}, x_{2}, x_{3}\right\}$ both form C-orthocentric systems.

Some results

Observation 4.1
Often statements which are true in \mathbb{E}^{2} for circles of different sizes have Minkowskian analogues only for congruent circles.

Some results

Observation 4.1
Often statements which are true in \mathbb{E}^{2} for circles of different sizes have Minkowskian analogues only for congruent circles.

Miquel's theorem

Theorem 4.3
Let C be the unit circle in a strictly convex normed plane with $x_{1}, x_{2}, x_{3}, x_{4} \in C$. If C_{i} are the four translates of C determined by pairs of neighboring points from $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, then either there exists a translate of C passing through the four points y_{i}, where $y_{i} \in C_{i} \cap C_{i+1}\left(C_{5}=C_{1}\right)$ and $y_{i} \notin C$, or $y_{i}=x_{i}(i=1,2,3,4)$.

Observation 4.2
Some theorems from \mathbb{E}^{2} still hold in strictly convex normed planes, but many of them only "partially". E.g., the Euler line exists in triangles with unique circumcenter, and the nine-point circle of Feuerbach remains only as a six-point circle.

Observation 4.2
Some theorems from \mathbb{E}^{2} still hold in strictly convex normed planes, but many of them only "partially". E.g., the Euler line exists in triangles with unique circumcenter, and the nine-point circle of Feuerbach remains only as a six-point circle.

The one who understands geometry is able to understand everything in this world.

Theorem 4.4
Let $p_{1} p_{2} p_{3}$ be a triangle in a strictly convex normed plane with circumcircle $x+\lambda C$ and C-orthocenter p. The circle $\frac{1}{2}(x+p)+\frac{1}{2} C$ passes through the midpoints of the sides of $p_{1} p_{2} p_{3}$ and the midpoints of $\left[p, p_{i}\right], i=1,2,3$.

Remark 4.1
This six-point circle becomes a (Feuerbach or) nine-point circle (with $\left[p p_{i}\right] \cap\left[p_{j} p_{k}\right],\{1,2,3\}=\{i, j, k\}$, as additional three points) for any triangle iff \mathbb{M}^{2} is Euclidean.

Theorem 4.5
Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four pairwise distinct points in a strictly convex normed plane lying on $x+\lambda C$. Then the six-point circles of the four triangles obtainable from $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ pass through a common point q, and their centers lie on $q+\frac{1}{2} \lambda C$ (the Feuerbach circle of the quadrilateral $\left.p_{1} p_{2} p_{3} p_{4}\right)$.

5. Outlook: Generalized Minkowski spaces (gauges)

 If the unit ball B is still a convex body with the origin in its interior, but the central symmetry of B is no longer demanded, then we have a generalized Minkowski space (with convex distance function or gauge).

New results of the Geometry group in Chemnitz refer also to the geometry of gauges!

Where there is matter, there is geometry! Johannes Kepler

Thank you!

