
Introduction Convexity Discrete & Computational Geometry Curve Theory Elementary Geometry Outlook

Results and Problems from Minkowski Geometry

Horst Martini (TU Chemnitz)

Joint work with V. Boltyanski, M. Lassak, M. Spirova,
K. J. Swanepoel, and Senlin Wu

July 2, 2015

1 / 64



Introduction Convexity Discrete & Computational Geometry Curve Theory Elementary Geometry Outlook

Minkowski Geometry

Philosophy is a game with aims, but without rules. Mathe-

matics is a game with rules, but without aims. Ian Ellis

Minkowski Geometry is the geometry of finite dimensional real
Banach spaces (= Minkowski spaces)

Historical origins:

• B. Riemann (1868): `4-norm

• H. Minkowski (1896): axiomatic approach

• D. Hilbert (˜ 1900): 4th Hilbert problem

• St. Banach, H. Busemann, V. Klee, Br. Grünbaum, . . .
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Connections

Minkowski Geometry

finite dimension locally

generalization,
methods

axiomatics

Banach Space
Theory

Finsler Geometry

Convex Geometry
Geometry of Numbers,
Foundations of Geometry
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Today

Revitalization within “other” research fields, such as

• Computational Geometry

• Discrete Geometry

• Functional Analysis

• Optimization (Location Science, . . . )

• Convex Analysis

• non-Euclidean geometries in general
...
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Motivation

• direction-dependent phenomena (e.g., in Physics), such as
crystal growth, whiskers, etc.

• Geometry of Numbers (lattice point problems)

• Location Science with non-Euclidean road systems

The topic of Pure Physics is the development of the rules of

the understandable world. The topic of Pure Mathematics

is the development of the rules of the human intelligence.

J.J. Sylvester
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Concept

Md = (Rd , ‖ · ‖) . . . d-dimensional Minkowski space
unit ball B of Md . . . convex body centered at the origin
‖ · ‖ . . . norm induced by B:

∀x ∈ Rd : ‖x‖ = min{λ ≥ 0: x ∈ λB}
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1. Minkowski Geometry and Convexity

• H. Minkowski (1896): Geometry of numbers

• St. Banach (early 20’s): Foundations of Functional Analysis

• H. Busemann (since 40’s): Finsler Geometry

• M.M. Day, R.C. James, D. Amir et al. (since 40’s): finite
dimensional Banach Space Theory

• H.G. Eggleston, C.M. Petty, Br. Grünbaum, V. Klee, G.D.
Chakerian, K. Leichtweiss, . . . (since 50’s): Convex Geometry

• H. Groemer, R. Schneider, K. Ball, A.C. Thompson, . . . (since
80’s): Convex Geometry
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1.1. Partial fields

• special norms (ellipsoids, `p-norms, zonoids, polytopes, . . . )

• special types of convex bodies studied in normed spaces
(complete sets, bodies of constant width, reduced bodies, ball
polytopes, . . . )

• projection bodies and intersection bodies (isoperimetric
problem)

• concepts of area and content (e.g., Holmes-Thompson area)
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1.2. Reduced bodies in Md

Poetry is the art of giving different names to the same thing;

Math is the art of giving the same name to different things.

Henri Poincaré

K . . . compact set in Md

diam(K ) . . . maximal width = diameter of K
∆(K ) . . . minimal width = thickness of K

Definition 1.1
A convex body C ⊂Md is said to be complete if
diam(K ) > diam(C ) for any compact set K with C $ K .

Definition 1.2
A convex body R ⊂Md is said to be reduced if ∆(K ) < ∆(R) for
any convex body K with K $ R.

13 / 64



Introduction Convexity Discrete & Computational Geometry Curve Theory Elementary Geometry Outlook

1.2. Reduced bodies in Md

Poetry is the art of giving different names to the same thing;

Math is the art of giving the same name to different things.

Henri Poincaré
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Euclidean space Rd

complete = constant width reduced

• Are there reduced polytopes in Rd , d ≥ 3?

• Is a strictly convex reduced body in Rd , d ≥ 3, necessarily of
constant width?
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Euclidean space Rd

• Which convex body R ⊂ Rd , d ≥ 3, of thickness ∆(R) = 1
has minimal volume?
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Minkowski space Md
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Minkowski space Md
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Some results

Let R be a reduced body in Md , d ≥ 2.

R centrally symmetric ⇔ R and B are homothets

R smooth ⇔ R of constant width

No R is smooth ⇐ B is not smooth
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Some results

Any R is representable as homothet ⇐ B = conv{±b1, . . . ,±bm}
of conv{t1 + [o, b1], . . . , tm + [o, bm]} is a polytope
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Results in the Minkowski plane

for d = 2:

• For every reduced body R ⊂M2 we have diam(R)
∆(R) ≤ 2.

B

R

o

• Every strictly convex reduced body R ⊂M2 is of constant
width.

The basic principle of modern Mathematics is to achieve

a complete fusion of “geometric” and “analytic” ideas.

J.A.E. Dieudonné
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Results in the Minkowski plane
• The boundary of every reduced body R ⊂M2 is the union of

all arms of butterflies of R and all endpoints of thickness
chords of R.

“butterfly”
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Results in the Minkowski plane

• A triangle in a normed plane is reduced iff it is equilateral in
the respective antinorm (whose unit ball is the dual of B
rotated by 90◦). (−→ Fermat-Torricelli problem, Steiner
minimum trees)

• The perimeter of every planar reduced body R satisfies
per(R) ≥ π ·∆(R), with equality iff R is of constant width.
(per(R) > π ·∆(R) if R is a polygon.)
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Minkowski space Md
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Minkowski space Md

Problems:

• Do there exist normed spaces in which the balls are the only
reduced bodies?

• In which normed spaces is any reduced body also complete, or
even of constant width?

• Do there exist normed spaces Md , d ≥ 3, in which there are
no reduced polytopes?
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Minkowski space Md

• Which convex bodies of thickness 1 have minimal volume (for
any Md)?

• Since completeness is not equivalent to constant width in
Minkowski spaces, there are also complete sets which are not
reduced for d ≥ 3.
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Minkowski space Md

⇒ Give a complete Venn diagram representation of the families of
reduced, complete and constant with bodies in Md , d ≥ 3.

The art of doing Mathematics consists in finding that

special case which contains all the germs of generality.

David Hilbert
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Conjecture
In any normed space Md , d ≥ 3, there exist reduced bodies R with
∆(R) = 1 having arbitrarily large diameter!

Everything that is only likely is most likely wrong!

René Descartes
27 / 64
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2. Discrete & Computational Geometry in normed spaces

In the great garden of Geometry, everyone can pick up a

bunch of flowers, simply following his taste. David Hilbert

• H. Minkowski (1896): Geometry of numbers

• H. Hadwiger, V. Boltyanski, L. Fejes Tóth, B. Grünbaum, V.
Klee et al. (since 60’s): packings & coverings, circum- and
inballs, Borsuk numbers

• R. Klein, F. Aurenhammer, F. Santos et al. (since 90’s):
bisectors and Voronoi diagrams, geometric dilation, . . .

• V. Klee, P. Gritzmann (since 90’s): Computational Convexity

• today: Chebyshev sets (also computationally), minmax and
minsum location problems, ball operators, . . .
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2.1. The Fermat-Torricelli problem in Md

Women demand what is impossible: we should forget their

age, but not their birthday! Karl Farkas

Ed : P. de Fermat (1638), E. Torricelli (1640)

Given an arbitrary finite point set {x1, . . . , xm} ⊂ Ed , find the
(unique) point xmin ∈ Ed for which

f (x) =
m∑
i=1

‖xi − x‖, x ∈ Ed ,

is minimal!
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• unique solution in the

floating case absorbed case
m = 5 m = 4

x4 = xmin

• m ≥ 5: no exact ruler-and-compass construction (via Galois
theory)
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• level curves of f (x): multifocal ellipses etc.
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First important tool for Md

d-segment from x to y , x , y ∈Md :

[x , y ]d := {z ∈Md : ‖x − z‖+ ‖z − y‖ = ‖x − y‖}

xay a′yFy by

yFxbx a′x ax

m1
m2

M(x, y)

Cx

Cy
x

−x

B

a b

o
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Second important tool for Md

The norming functional of x ∈Md is a φ ∈ (Md)∗ such that the
dual norm ‖φ‖ = max‖x‖=1 φ(x) = 1 and φ(x) = ‖x‖. The

hyperplane φ−1(1) = {y ∈Md : φ(y) = 1} is then the supporting
hyperplane of B at x .
⇒Md is smooth ⇔ Each x 6= o has a unique norming functional.

Definition 2.1

The set of all x0 ∈Md minimizing
m∑
i=1

‖x − xi‖, x ∈Md , is called

the Fermat-Torricelli locus FT{x1, . . . , xm} of {x1, . . . , xm}.
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Theorem 2.1
Let X := {x0, x1, . . . , xm} ⊂Md be given arbitrarily.

1. If x0 6= x1, . . . , xm, then X \ {x0} is a floating FT
configuration with respect to x0 iff each xi − x0 has a norming
functional φi such that

m∑
i=1

φi = o.

2. If x0 = xj for some j ∈ {1, . . . ,m}, then X \ {x0} is an
absorbing FT configuration with respect to x0 iff each
xi − x0 (i 6= j) has a norming functional φi such that∥∥∥∥∥

m∑
i=1

φi

∥∥∥∥∥ ≤ 1 for i 6= j .
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Given a functional φ ∈ (Md)∗ of norm 1 and some x ∈Md . Define
the cone

C (x , φ) = x − {a : φ(a) = ‖a‖}.
Thus, C (x , φ) is the translate by x of the union of all rays from o
through the exposed face of φ−1(−1) ∩ B.
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Theorem 2.2
For any Md , let p ∈ FT{x1, . . . , xm} \ {x1, . . . , xm}, and with φi as
norming functional of xi − p let

∑m
i=1 φi = o. Then

FT{x1, . . . , xm} =
m⋂
i=1

C (xi , φi )

Corollary 2.1

If {x1, . . . , x2k} can be matched up to form k d-segments
[xi , xk+i ]d , i = 1, . . . , k, with non-empty intersection, then

FT{x1, . . . , x2k} =
k⋂

i=1

[xi , xk+i ]d .
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Examples

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

B

x− x

y

− y

B

x1

x2

x3

x4

ft( )A

FT (A) = conv(A) is possible Two non-disjoint d-segments
in the maximum norm. create FT (A).
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B

ft( )A

Three non-disjoint d-segments
create FT (A).
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Theorem 2.3
For any A ⊂Md we have |A ∩ FT (A) ≤ 2d |. Equality holds iff Md

is isometric to `d1 , with A ∩ FT (A) corresponding to a homothet of
the Hamming cube {0, 1}d .
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2.2. Universal covers in normed planes

If we knew what it was we were doing, it would not be called

research, would it? Albert Einstein

• p ∈M2 is Birkhoff orthogonal to q ∈M2 if, for any
λ ∈ R, ‖p‖ ≤ ‖p + λq‖ holds (not symmetric!)

• Busemann (1947): For any ‖ · ‖, there is an antinorm ‖ · ‖a
such that q is Birkhoff orthogonal to p with respect to ‖ · ‖a

• the unit circle Ca of ‖ · ‖a is the isoperimetrix of ‖ · ‖
• if C and Ca are homothetic, then M2 is a Radon plane

• if follows that Birkhoff orthogonality is symmetric iff M2 is a
Radon plane

40 / 64
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Definition 2.2 (Lebesgue, 1914)

A set of smallest area containing a congruent (translative) copy of
any planar set of diameter 1 is said to be a universal cover (strong
universal cover).

Lemma 2.1
Every planar set of diameter 1 is contained in some planar set of
constant width 1.

41 / 64
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Theorem 2.4
In any normed plane, an anti-regular hexagon circumscribed about
a circle of diameter 1 is a strong universal cover.

Theorem 2.5
In any normed plane, an anti-regular triangle circumscribed about
a circle of diameter 1 is a strong universal cover.

Theorem 2.6
In any normed plane, there is a square of side length 1 which is a
strong universal cover. If any such square is a strong universal
cover, then the plane is a Radon plane.

Problem: Find more geometric figures which are universal covers in
any normed plane (or large norm classes), also in higher
dimensions!
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3. Some curve theory in normed planes

Everyone knows what a curve is, until he has studied enough

Mathematics to become confused through the countless

number of possible exceptions. Felix Klein

x−x x−x
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3. Some curve theory in normed planes

• C.M. Petty, H. Guggenheimer (50’s): Frenet formulas,
involutes & evolutes, 4-vertex-theorem

• S. Tabachnikov, M. Ghandehari (90’s): Minkowskian caustics,
curvature functions

• R. Ait-Haddou et al. (2000): applications in CAD (freeform
curve design etc.)

x

−x

x

−x
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Euclidean multifocal ellipses

o
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3.1. Cassini curves in normed planes

. . . locus of all points in E2 whose product of distances to two
given points (foci) is constant

x−x x−x

G.D. Cassini (1680): proposed these curves (in opposition to J.
Kepler) as planetary orbits

Geometry is knowledge of the eternally existent. Pythagoras

46 / 64



Introduction Convexity Discrete & Computational Geometry Curve Theory Elementary Geometry Outlook

3.1. Cassini curves in normed planes

. . . locus of all points in E2 whose product of distances to two
given points (foci) is constant

x−x x−x

G.D. Cassini (1680): proposed these curves (in opposition to J.
Kepler) as planetary orbits

Geometry is knowledge of the eternally existent. Pythagoras

46 / 64



Introduction Convexity Discrete & Computational Geometry Curve Theory Elementary Geometry Outlook

Definitions
The point set

C (o, 2x , c) := {z ∈M2 : ‖z‖ · ‖z − 2x‖ = c}
is called the Cassini curve with foci o, 2x and of size c > 0.

Furthermore, B(−x , x) := {y ∈M2 : ‖y − (−x)‖ = ‖y − x‖} is
called the bisector of conv{−x , x},−x 6= x , and we introduce

H∓−x ,x :=

{
y ∈M2 : ‖y − (−x)‖ ≤≥ ‖y − x‖

}
.

x−x x−x
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Theorem 3.1
For x ∈M2 with ‖x‖ = 1 and c > 0 the set C (o, 2x , c) ∩ B(o, 2x)
is symmetric with respect to x , and it is the union of two (possibly
degenerate) segments.

Theorem 3.2
For x ∈M2 with ‖x‖ = 1 and 0 < c < 1,C (o, 2x , c) is the union
of two disjoint closed curves which bound two disjoint star-shaped
sets.

48 / 64
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Theorem 3.3
For x ∈M2 with ‖x‖ = 1 each of the two sets C (o, 2x , 1) ∩ H∓o,2x
is a closed curve, and we have

∅ 6=
(
C (o, 2x , 1) ∩ H−o,2x

)
∩
(
C (o, 2x , 1) ∩ H+

o,2x

)
⊂ B(o, 2x).

In general, this set may contain infinitely many points. M2 is
strictly convex if this set is a singleton for each unit vector.

Theorem 3.4
For x ∈M2 with ‖x‖ = 1 and c > 1, then C (o, 2x , c) is a simple
closed curve symmetric with respect to x .
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Remark 3.1
One can construct normed planes such that the region bounded by
C (o, 2x , c) is not convex for any c ≥ 1.

Observation: In the literature, multifocal Cassini curves were never
studied for normed planes, although for the Euclidean norm they
are very popular (e.g., as so-called n-lemniscates).

o
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3.2. Other classes of curves in normed planes

• not much is known about conic sections (different definitions
can describe different classes of curves)

• the geometry of circles is not satisfactorily developed

• Radon curves and equiframed curves as tools

• (almost) nothing is known about further individual curve
classes in normed planes !!
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4. Elementary Geometry in Minkowski spaces

How to prove something we learn in Elementary Geometry!

• S. Go lab, D. Laugwitz (since 30’s): “Minkowskian π”

• L. Tamassy, Br. Grünbaum (since 60’s): extensions to gauges,
Feuerbach circle, 3-circles-theorem, . . .

• L.M. Kelly, I.M. Yaglom, J.J. Schäffer: re-entrant property,
polygons inscribed in Jordan curves, circle geometry, . . .

• today: many theorems from E2 were never generalized
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A triangle with a non-unique circumcircle (smooth norm)
and a triangle without circumcircle (strictly convex norm)

Without Geometry, life would be pointless!
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A triangle with three and a triangle with only two excircles
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Some results

It is the enjoyment of shape in a higher sense that makes

the geometer. Alfred Clebsch

Theorem 4.1
Let p1, p2, p3 be three distinct points on the unit circle C of a
strictly convex normed plane, and let xi + C (i = 1, 2, 3) be three
circles different from C , each containing two points pi . Then

3⋂
j=1

(xj + C ) consists of precisely one point p.

Definition 4.1
The point p is called the C -orthocenter of the triangle p1p2p3

since p − pi is James orthogonal to pj − pk ({1, 2, 3} = {i , j , k}),
i.e., ‖(p − pi ) + (pj − pk)‖ = ‖(p − pi )− (pj − pk)‖.
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Some results

Truth is ever to be found in the simplicity, and not in the

multiplicity and confusion of things. Isaac Newton

Theorem 4.2
In this situation, the quadruples {p, p1, p2, p3} and {o, x1, x2, x3}
both form C -orthocentric systems.
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Some results

Observation 4.1
Often statements which are true in E2 for circles of different sizes
have Minkowskian analogues only for congruent circles.
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Miquel’s theorem

Theorem 4.3
Let C be the unit circle in a strictly convex normed plane with
x1, x2, x3, x4 ∈ C . If Ci are the four translates of C determined by
pairs of neighboring points from {x1, x2, x3, x4}, then either there
exists a translate of C passing through the four points yi , where
yi ∈ Ci ∩ Ci+1 (C5 = C1) and yi /∈ C , or yi = xi (i = 1, 2, 3, 4).
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Observation 4.2
Some theorems from E2 still hold in strictly convex normed planes,
but many of them only “partially”. E.g., the Euler line exists in
triangles with unique circumcenter, and the nine-point circle of
Feuerbach remains only as a six-point circle.

The one who understands geometry is able to understand

everything in this world. Galileo Galilei

Theorem 4.4
Let p1p2p3 be a triangle in a strictly convex normed plane with
circumcircle x + λC and C -orthocenter p. The circle
1
2 (x + p) + 1

2C passes through the midpoints of the sides of p1p2p3

and the midpoints of [p, pi ], i = 1, 2, 3.
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Remark 4.1
This six-point circle becomes a (Feuerbach or) nine-point circle
(with [ppi ] ∩ [pjpk ], {1, 2, 3} = {i , j , k}, as additional three points)
for any triangle iff M2 is Euclidean.
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Theorem 4.5
Let p1, p2, p3, p4 be four pairwise distinct points in a strictly
convex normed plane lying on x + λC . Then the six-point circles
of the four triangles obtainable from {p1, p2, p3, p4} pass through a
common point q, and their centers lie on q + 1

2λC (the Feuerbach
circle of the quadrilateral p1p2p3p4).
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5. Outlook: Generalized Minkowski spaces (gauges)
If the unit ball B is still a convex body with the origin in its
interior, but the central symmetry of B is no longer demanded,
then we have a generalized Minkowski space (with convex distance
function or gauge).

New results of the Geometry group in Chemnitz refer also to the
geometry of gauges!
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Where there is matter, there is geometry! Johannes Kepler

Thank you!
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