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Motivation

Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)
Every d-dimensional convex body can be covered by 2d smaller positively homothetic
copies of itself.

In other words, for every convex body K ⊂ Rd there exists 0 < λ < 1 and points
xi ∈ Rd, i ≤ 2d, such that

K ⊂
2d⋃

i=1

(xi + λK).

Remark 1. One needs exactly 2d translations in the case of d-dimensional cube
(for every 1/2 ≤ λ < 1).

Remark 2. The best known bounds are 7d(ln d) 2d in the symmetric case and
4
√

d(ln d)4d in the general case.
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Motivation

Let K be a convex body in Rd with non-empty interior.
Def. 1. A point p ∈ Rd \ K illuminates a boundary point q of K if the ray emanating
from p and passing through q intersects the interior of K (after the point q).

Def. 2. A family of exterior points of K, {p1, p2, . . . , pm} ⊂ Rd \ K, illuminates K if
each boundary point of K is illuminated by at least one of pi’s.

Illumination conjecture (Boltyanski-Hadwiger, 60)
Every d-dimensional convex body can be illuminated by 2d points.

Remark 1. Clearly, we need 2d points to illuminate the d-dimensional cube.

Remark 2. Two conjectures above are equivalent (Boltyanski).
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Motivation

Although computing the smallest number of points illuminating a given body is very
important, it does not provide any quantitative information on points of illumination.
In particular, one can take such points to be very far from the body.

To control that, K. Bezdek (1992) introduced the illumination parameter, ill(K), of K
as follows:

ill(K) = inf

{∑
i

‖pi‖K | {pi}i illuminates K

}
.

Here ‖x‖K denotes the gauge (or Minkowski functional) of K, i.e.

‖x‖K = inf{λ > 0 | x ∈ λK}.

This insures that far-away points of illumination are penalized.
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Motivation

K. Bezdek posed the problem of finding the upper bound for the ill(K). He also
provided some estimates and conjectured that for every symmetric body K

ill(K) ≥ 2d and ill(Bd
2) = 2d3/2

(i.e. the best illumination for the ball is given by vertices of the octahedron).

Motivated by the notion of the illumination parameter K. Swanepoel (2004)
introduced the covering parameter of a convex body K by

cov(K) = inf

{∑
i

1
1− λi

| K ⊂
⋃

i

(xi + λiK), 0 < λi < 1, xi ∈ Rd

}
.

In this way homothets almost as large as K are penalized.

Theorem (Swanepoel)
For every symmetric convex body K in Rd one has

ill(K) ≤ 2 cov(K) ≤ C 2dd2 ln d.

Recently, K. Bezdek and M. Khan have introduced a related notion – covering index.
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Vertex index

Idea. To measure the smallest possible closeness to 0 of the vertex set of a polytope
containing K. In other words, we want to inscribe a symmetric convex body into a
polytope with small number of vertices, which are not far away from the origin.

Def. Let K be a symmetric convex body in Rd. We introduce the vertex index of K as
follows:

vein(K) = inf

{
m∑

i=1

‖pi‖K | K ⊂ conv{pi}i≤m

}
.
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Simple properties

Below K, L are symmetric convex bodies, T is an invertible linear operator, d(·, ·)
denotes the Banach-Mazur distance, that is

d(K,L) = inf {λ > 0 | K ⊂ SL ⊂ λK, S is an invertible linear operator} .

Claim 1. vein(K) = vein(TK).

Claim 2. vein(K) ≤ d (K,L) · vein(L).

Claim 3. vein(K) ≤ ill(K) and for smooth K one has vein(K) = ill(K).

Remark. Note that ill(Bd
∞) = 2d, while below we will see that vein(K) ≤ Cd3/2.

It shows that ill(K) is rather unstable, while Claim 2 shows that vein(K) is stable.
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Results

Theorem
For every symmetric convex body K in Rd one has

d3/2
√

2πe ovr(K)
≤ vein(K) ≤ 24 d3/2.

Here ovr(K) is the outer volume ratio of K, ovr(K) = inf (Vol(E)/Vol(K))
1/d

, where
the infimum is taken over all ellipsoids E ⊃ K and Vol(·) denotes the volume.

Remark. For many convex bodies the lower bound is sharp, namely for

1. the unit balls of `p, denoted by Bd
p:

for p ≥ 2: ovr(Bd
p) ≤ C; for 1 ≤ p ≤ 2: ovr(Bd

p) ≈ d1/p−1/2, vein(Bd
p) ≈ d2−1/p

2. bodies with bounded outer volume ratio, vein(K) ≈ d3/2, e.g. Bd
p for p ≥ 2.

3. some bodies with large ovr, e.g. vein(Bd
1) = 2d and ovr(Bd

1) ≈
√

d.
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Results

Question. Is it true that vein(K) ≈ d3/2

ovr(K) , i.e. vein(K) · ovr(K) ≈ d3/2?

Answer: NO. There exists a body K such that

ovr(K) ≥ c

√
d

ln(2d)
and vein(K) ≥ c d3/2.

To construct such a body we use a random polytope P:
Take d2 random points uniformly distributed on the sphere and take absolute convex
hull of them with the canonical basis (such a construction was first used by Gluskin to
estimate the diameter of Minkowski compactum). By a well-known volume estimates

ovr(P) ≥ c
√

d/ ln(2d) and one can show that vein(P) ≥ c d3/2.

Thus

ovr(P) · vein(P) ≥ c d2√
ln(2d)

.
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Results

Theorem.

vein(Bd
1) = 2d,

d3/2

9
≤ vein(Bd

∞) ≤ 5d3/2, and
d3/2
√

3
≤ vein(Bd

2) ≤ 2d3/2

Conjecture. vein(Bd
2) = 2d3/2.

Theorem. The conjecture is true in dimensions 2 and 3:

vein(B2
2) = 4

√
2 and vein(B3

2) = 6
√

3.

As a consequence, if K ⊂ R2, L ⊂ R3 are symmetric convex bodies, then

4 ≤ vein(K) ≤ 6 and 6 ≤ vein(L) ≤ 18.

Remarks. 1. As an example of the octahedron shows, the lower estimates are sharp.
2. The regular hexagon shows that the upper estimate 6 in the planar case is sharp.
3. We do not know the best possible upper estimate in the 3-dimensional case.
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Results

Theorem. For every symmetric convex body K in Rd one has vein(K) ≥ 2d.

The proof is based on the following result on the asymmetry of convex polytopes with
a few vertices.
Let 1 ≤ k ≤ d and m = k + d. By P = Pm = conv{xi}i≤m denote a convex polytope
in Rd with m vertices. Clearly, if k < d, P cannot be symmetric and, clearly, P is most
asymmetric for k = 1. In an earlier work we proved that if L = −L then

d(P,L) ≥ max
i
‖ − xi‖P ≥

d
k
.

The next theorem shows that the same lower bound holds not only for the worst
vertex, but in average as well.

Theorem.
1
m

m∑
i=1

‖ − xi‖P ≥
m
2k
≥ d

2k
.

We show how the latter theorem implies the former one.
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Proofs

Proof. Let
K ⊂ P = conv{pi}i≤m.

WLOG we can assume that ‖pi‖K ≥ 1 for every i. If m ≥ 2d then we trivially have

m∑
i=1

‖pi‖K ≥ m ≥ 2d.

Assume m < 2d. Since K = −K ⊂ P, we have ‖x‖K ≥ ‖ − x‖P for every x ∈ Rd.
Therefore, applying our Theorem, we obtain

m∑
i=1

‖pi‖K ≥
m∑

i=1

‖ − pi‖P ≥
m2

2k
=

(d + k)2

2k
≥ 2d.

�
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Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John’s decomposition of
the Identity yield the following

Corollary.
For every symmetric convex body K in Rd there exists a symmetric convex polytope
P in Rd with 8d vertices such that

d(K,P) ≤ 3
√

d.

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the
number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his
strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

vein(K) ≤ 3
√

d vein(P) ≤ 24d3/2.

Alexander Litvak (Univ. of Alberta) Vertex index of symmetric convex bodies Veszprém 2015 13 / 24



Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John’s decomposition of
the Identity yield the following

Corollary.
For every symmetric convex body K in Rd there exists a symmetric convex polytope
P in Rd with 8d vertices such that

d(K,P) ≤ 3
√

d.

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the
number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his
strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

vein(K) ≤ 3
√

d vein(P) ≤ 24d3/2.

Alexander Litvak (Univ. of Alberta) Vertex index of symmetric convex bodies Veszprém 2015 13 / 24



Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John’s decomposition of
the Identity yield the following

Corollary.
For every symmetric convex body K in Rd there exists a symmetric convex polytope
P in Rd with 8d vertices such that

d(K,P) ≤ 3
√

d.

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the
number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his
strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

vein(K) ≤ 3
√

d vein(P) ≤ 24d3/2.

Alexander Litvak (Univ. of Alberta) Vertex index of symmetric convex bodies Veszprém 2015 13 / 24



Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John’s decomposition of
the Identity yield the following

Corollary.
For every symmetric convex body K in Rd there exists a symmetric convex polytope
P in Rd with 8d vertices such that

d(K,P) ≤ 3
√

d.

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the
number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his
strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

vein(K) ≤ 3
√

d vein(P) ≤ 24d3/2.

Alexander Litvak (Univ. of Alberta) Vertex index of symmetric convex bodies Veszprém 2015 13 / 24



Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John’s decomposition of
the Identity yield the following

Corollary.
For every symmetric convex body K in Rd there exists a symmetric convex polytope
P in Rd with 8d vertices such that

d(K,P) ≤ 3
√

d.

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the
number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his
strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

vein(K) ≤ 3
√

d vein(P) ≤ 24d3/2.

Alexander Litvak (Univ. of Alberta) Vertex index of symmetric convex bodies Veszprém 2015 13 / 24



Proof of a lower bound on vertex index

WLOG we assume that Bd
2 is the ellipsoid of minimal volume for K. Then | · | ≤ ‖ · ‖K .

Let {pi}N
1 ∈ Rd be such that K ⊂ conv{pi}N

1 . Clearly N ≥ d + 1. Denote

L := absconv{pi}N
1 then L◦ = {x | |〈x, pi〉| ≤ 1 for every i ≤ N} .

A Theorem of Ball and Pajor implies

vol (L◦) ≥

(
d/

N∑
i=1

|pi|

)d

.

By Santaló inequality vol (L) vol (L◦) ≤
(
vol
(
Bd

2

))2
and since K ⊂ L, we obtain

vol (K) ≤ vol (L) ≤
(
vol
(
Bd

2

))2

vol (L◦)
≤
(
vol
(
Bd

2

))2

(
1
d

N∑
i=1

|pi|

)d

.

Finally, since Bd
2 is the minimal volume ellipsoid for K and ‖ · ‖K ≥ | · |, we have

1
ovr(K)

=

(
vol (K)

vol
(
Bd

2

))1/d

≤
(
vol
(
Bd

2

))1/d 1
d

N∑
i=1

‖pi‖K ≤
√

2πe
d3/2

N∑
i=1

‖pi‖K .
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Let {pi}N
1 ∈ Rd be such that K ⊂ conv{pi}N

1 . Clearly N ≥ d + 1. Denote

L := absconv{pi}N
1 then L◦ = {x | |〈x, pi〉| ≤ 1 for every i ≤ N} .

A Theorem of Ball and Pajor implies

vol (L◦) ≥

(
d/

N∑
i=1

|pi|

)d

.

By Santaló inequality vol (L) vol (L◦) ≤
(
vol
(
Bd

2

))2
and since K ⊂ L, we obtain

vol (K) ≤ vol (L) ≤
(
vol
(
Bd

2

))2

vol (L◦)
≤
(
vol
(
Bd

2

))2
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1
d

N∑
i=1
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)d
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Proof of “asymmetry" theorem.

Theorem. If K = conv{xi}i≤m ⊂ Rd with m = k + d ≤ 2d then

1
m

m∑
i=1

‖ − xi‖K ≥
m
2k
≥ d

2k
.

Proof. Consider the linear operator T : Rm → Rd defined by Tei = xi.
Let L = Ker T . Clearly, dim L = k. Let P be the orthogonal projection onto L⊥.

Note
K◦ = {f ∈ Rd | 〈f , xj〉 ≤ 1 for every j ≤ m},

Thus

A :=

m∑
i=1

‖ − xi‖K =

m∑
i=1

sup
{
〈f ,−xi〉 | f ∈ Rd, 〈f , xj〉 ≤ 1 for every j ≤ m

}
.

Using 〈f , xi〉 = 〈f ,Tei〉 = 〈T∗f , ei〉, we obtain

A =

m∑
i=1

sup
{
〈h,−ei〉 | h ∈ Rm, h ∈ L⊥, 〈h, ej〉 ≤ 1 for every j ≤ m

}
.
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Proof

A =

m∑
i=1

sup
{
〈h,−ei〉 | h ∈ Rm, h ∈ L⊥, 〈h, ej〉 ≤ 1 for every j ≤ m

}
.

Denote

S := {h ∈ Rm | 〈h, ej〉 ≤ 1 for every j ≤ m}, Qi := {h ∈ Rm | 〈h, ei〉 ≥ −1}.

Then

S◦ = {h ∈ Rm | 0 ≤ 〈h, ej〉 for every j ≤ m, and
m∑

j=1

〈h, ej〉 ≤ 1}

and
Q◦i = {h ∈ Rm | −1 ≤ 〈h, ei〉 ≤ 0, 〈h, ej〉 = 0 for j 6= i}.

Therefore

‖z‖S◦ :=

{ ∑m
j=1〈z, ej〉 if 〈z, ej〉 ≥ 0 for every j ≤ m,

∞ otherwise.
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Proof

Then ‖z‖PS◦ = infy∈L ‖z + y‖S◦

= inf


m∑

j=1

〈z + y, ej〉 | y ∈ L, 〈y, ej〉 ≥ −〈z, ej〉 for every j ≤ m

 .

By duality,

A =
m∑

i=1

sup
h∈S∩L⊥

〈h,−ei〉 =
m∑

i=1

sup
h∈S∩L⊥

‖h‖Qi =
m∑

i=1

sup
h∈Q◦i

‖h‖PS◦ =
m∑

i=1

‖ − ei‖PS◦

=

m∑
i=1

inf


m∑

j=1

〈y, ej〉 − 1 | y ∈ L, 〈y, ei〉 ≥ 1, 〈y, ej〉 ≥ 0 for every j ≤ m

 .

Assume that for every i ≤ m the latter infimum attains on yi ∈ L. Let yij := 〈yi, ej〉.
Then yij ≥ 0 and yii ≥ 1, and the matrix {yij} has rank at most k.
For such matrices (Lemma) one has

A =

m∑
i=1

m∑
j=1

yij − m ≥ m(m− 1)

2k − 1
≥ m2

2k
.
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Proof of Lemma.

Lemma. Let Λ = {λij} be an m× m matrix of rank k with nonnegative entries such
that λii ≥ 1 for every i ≤ m. Then

∀m
∑

i,j

λij ≥ 3m− 2k and ∀m ≥ 2k
∑

i,j

λij ≥ m +
m(m− 1)

2k − 1
.

Proof. WLOG λii = 1 for every i (otherwise we pass to the matrix {λij/λii}ij).
Consider T = Λ− I, where I is the identity and denote its entries by tij. Clearly,
tij ≥ 0 and tii = 0 for every i, j. By λj denote the eigenvalues of T .
Since Λ is of rank k, at least m− k of eigenvalues of T are equal to −1

0 =

m∑
i=1

tii = TraceT =

m∑
i=1

λi,

Thus, using Weil’s Theorem,

m∑
i,j=1

tij ≥
m∑

i=1

|λi| ≥ 2m− 2k.
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Proof

Thus, since T = Λ− I , we observe
∑

i,j λij ≥ 3m− 2k.

Now assume m ≥ 2k. Let 2k ≤ ` ≤ m and σ ⊂ {1, 2, . . . ,m} be of cardinality `, and

Λ̄ = {λij}i,j∈σ .

Clearly, rank Λ̄ ≤ k, so, by the first part,∑
i,j∈σ

λij ≥ 3`− 2k.

Using averaging argument, we obtain

m∑
i,j=1

λij = m +

m∑
i,j=1
i6=j

λij = m +

(
m− 2
l− 2

)−1 ∑
σ⊂{1,2,...,m}
|σ|=`

∑
i,j∈σ

i6=j

λij

≥ m +

(
m− 2
l− 2

)−1(m
l

)
(2l− 2k) = m + 2

m(m− 1)

`(`− 1)
(`− k) .

The choice ` = 2k completes the proof.
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The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

vein(K) = inf

{
m∑

i=1

‖pi‖K−a | a ∈ K, K − a ⊂ conv{pi}i≤m

}
.

Problem. What is the best possible upper bound on vein(K)?

Recall an observation of Lassak: for every d-dimensional convex body K there exists
a simplex L ⊂ K (maximal volume simplex works) such that K ⊂ (d + 2)L.
Therefore, the trivial bound via d-dimensional simplex gives

vein(K) ≤ (d + 1)(d + 2) = d2 + 3d + 2

(to be compared with vein(K) ≤ 24d3/2 in the symmetric case).

The approach via John decomposition would give the upper bound Cd2 with C > 1.

This problem is closely related to approximation of convex bodies by polytopes (with
small amount of verteces) in terms of Banach-Mazur distance.
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Approximation of convex bodies by polytopes

Problem. Find the best possible λ = λ(d,N) such that for every d-dimensional
convex body K there exists a polytope P ⊂ K with N vertices satisfying

P ⊂ λK.

In the symmetric case λ(d, 8d) ≤ 3
√

d. Moreover, Barvinok (2012) proved that for
d ≥ 2 ln 2N,

c

√
d

ln 2N ln 2N
d

≤

λ(d,N) ≤ C

√
d

ln 2N
· ln d

ln 2N
.

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that
Barvinok’s bound is optimal up to a logarithmic factor.

S.Szarek (2014) proved λ(d,N) ≤ C d
ln(2N/d) in the non-symmetric case.

Question. What is N for λ ≤ d1−ε? We conjecture that N = Cd is enough.
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Lower bound for the Euclidean ball

The above proof gives vein(Bd
2) ≥ d3/2/

√
2πe. Here we suggest another approach to

the problem, which is of independent interest, and leads to the bound d3/2/
√

3.

Proof. Assume that Bd
2 ⊂ L = conv{xi}i≤N , denote a =

∑N
i=1 |xi|. Goal: a2 ≥ d3/3.

Define the operator T : RN → Rd by Tei = xi. Then rkT = d, a =
∑N

i=1 |Tei|, and

∀x ∈ Rd |x| ≤ ‖x‖L0 = max
i≤N
〈x, xi〉 = max

i≤N
〈T∗x, ei〉.

For i ≤ N denote

λi =
√
|Tei|/a and vi =

Tei

aλi
.

Then
d∑

i=1

λ2
i = 1 and

d∑
i=1

|vi|2 = 1.

We also observe that T∗ can be presented as T∗ = aΛS, where Λ is the diagonal
matrix with λi’s on the diagonal and S =

∑N
i=1 vi ⊗ ei

(recall (X ⊗ Y)(z) = 〈X, z〉Y , or X ⊗ Y = {YiXj}). Note that the rank of S equals d.
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Lower bound for the Euclidean ball

The above proof gives vein(Bd
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2πe. Here we suggest another approach to

the problem, which is of independent interest, and leads to the bound d3/2/
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3.
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Lower bound for the Euclidean ball

Let s1 ≥ s2 ≥ . . . ≥ sd > 0 be the singular values of S and let {wi}i≤n, {zi}i≤d be
orthonormal systems such that S =

∑d
i=1 siwi ⊗ zi.

Then
d∑

i=1

s2
i = ‖S‖2

HS =
d∑

i=1

|vi|2 = 1,

Now for m ≤ d denote Sm =
∑d

i=m siwi ⊗ zi and consider the
(d + 1− m)-dimensional subspace Em = Im (ΛSm) ⊂ Im T∗.

Considering the extreme points of the section of the cube BN
∞ ∩ Em we observe that

there exists a vector y = {yi}i≤N ∈ BN
∞ ∩ Em such that the set A = {i | |yi| = 1} has

cardinality at least d + 1− m.
WLOG we assume that |A| = d + 1− m (otherwise pass to a subset of A). Then

|(aΛ)−1y| = 1
a

√√√√ N∑
i=1

y2
i

λ2
i
≥ 1

a

√∑
i∈A

1
λ2

i
≥ d + 1− m

a
√∑

i∈A λ
2
i

≥ d + 1− m

a
√∑N

i=1 λ
2
i

=
d + 1− m

a
.
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Lower bound for the Euclidean ball

Note that by construction y ∈ Em ⊂ Im T∗, so denoting the inverse of T∗ from the
image by (T∗)−1 we have

|(T∗)−1y| = |S−1(aΛ)−1y| = |S−1
m (aΛ)−1y| ≥ |(aΛ)−1y|

‖Sm‖
≥ d + 1− m

asm
.

Since |x| ≤ maxi≤N〈T∗x, ei〉,

d + 1− m
asm

≤ |(T∗)−1y| ≤ max
i≤N
〈T∗(T∗)−1y, ei〉 = ‖y‖∞ = 1.

This shows sm ≥ (d + 1− m)/a and implies

d3

3a2 ≤
1
a2

d∑
m=1

(d + 1− m)2 ≤
d∑

m=1

s2
m = 1,

which proves the desired result.
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