# Vertex index of symmetric convex bodies 

Alexander Litvak<br>University of Alberta<br>based on joint works with<br>K. Bezdek and E.D. Gluskin<br>(papers available at: http://www.math.ualberta.ca/ alexandr)

Veszprém 2015

## Motivation

## Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)

Every $d$-dimensional convex body can be covered by $2^{d}$ smaller positively homothetic copies of itself.

## Motivation

## Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)

Every $d$-dimensional convex body can be covered by $2^{d}$ smaller positively homothetic copies of itself.
In other words, for every convex body $K \subset \mathbb{R}^{d}$ there exists $0<\lambda<1$ and points $x_{i} \in \mathbb{R}^{d}, i \leq 2^{d}$, such that

$$
K \subset \bigcup_{i=1}^{2^{d}}\left(x_{i}+\lambda K\right)
$$

## Motivation

## Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)

Every $d$-dimensional convex body can be covered by $2^{d}$ smaller positively homothetic copies of itself.
In other words, for every convex body $K \subset \mathbb{R}^{d}$ there exists $0<\lambda<1$ and points $x_{i} \in \mathbb{R}^{d}, i \leq 2^{d}$, such that

$$
K \subset \bigcup_{i=1}^{2^{d}}\left(x_{i}+\lambda K\right)
$$

Remark 1. One needs exactly $2^{d}$ translations in the case of $d$-dimensional cube (for every $1 / 2 \leq \lambda<1$ ).

## Motivation

## Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)

Every $d$-dimensional convex body can be covered by $2^{d}$ smaller positively homothetic copies of itself.
In other words, for every convex body $K \subset \mathbb{R}^{d}$ there exists $0<\lambda<1$ and points $x_{i} \in \mathbb{R}^{d}, i \leq 2^{d}$, such that

$$
K \subset \bigcup_{i=1}^{2^{d}}\left(x_{i}+\lambda K\right)
$$

Remark 1. One needs exactly $2^{d}$ translations in the case of $d$-dimensional cube (for every $1 / 2 \leq \lambda<1$ ).
Remark 2. The best known bounds are $7 d(\ln d) 2^{d}$ in the symmetric case

## Motivation

## Covering Conjecture (Hadwiger, 57; Gohberg-Markus, 60)

Every $d$-dimensional convex body can be covered by $2^{d}$ smaller positively homothetic copies of itself.
In other words, for every convex body $K \subset \mathbb{R}^{d}$ there exists $0<\lambda<1$ and points $x_{i} \in \mathbb{R}^{d}, i \leq 2^{d}$, such that

$$
K \subset \bigcup_{i=1}^{2^{d}}\left(x_{i}+\lambda K\right)
$$

Remark 1. One needs exactly $2^{d}$ translations in the case of $d$-dimensional cube (for every $1 / 2 \leq \lambda<1$ ).
Remark 2. The best known bounds are $7 d(\ln d) 2^{d}$ in the symmetric case and $4 \sqrt{d}(\ln d) 4^{d}$ in the general case.

## Motivation

Let $K$ be a convex body in $\mathbb{R}^{d}$ with non-empty interior.
Def. 1. A point $p \in \mathbb{R}^{d} \backslash K$ illuminates a boundary point $q$ of $K$ if the ray emanating from $p$ and passing through $q$ intersects the interior of $K$ (after the point $q$ ).

## Motivation

Let $K$ be a convex body in $\mathbb{R}^{d}$ with non-empty interior.
Def. 1. A point $p \in \mathbb{R}^{d} \backslash K$ illuminates a boundary point $q$ of $K$ if the ray emanating from $p$ and passing through $q$ intersects the interior of $K$ (after the point $q$ ).
Def. 2. A family of exterior points of $K,\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{R}^{d} \backslash K$, illuminates $K$ if each boundary point of $K$ is illuminated by at least one of $p_{i}$ 's.

## Illumination conjecture (Boltyanski-Hadwiger, 60)

Every $d$-dimensional convex body can be illuminated by $2^{d}$ points.

## Motivation

Let $K$ be a convex body in $\mathbb{R}^{d}$ with non-empty interior.
Def. 1. A point $p \in \mathbb{R}^{d} \backslash K$ illuminates a boundary point $q$ of $K$ if the ray emanating from $p$ and passing through $q$ intersects the interior of $K$ (after the point $q$ ).
Def. 2. A family of exterior points of $K,\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{R}^{d} \backslash K$, illuminates $K$ if each boundary point of $K$ is illuminated by at least one of $p_{i}$ 's.

## Illumination conjecture (Boltyanski-Hadwiger, 60)

Every $d$-dimensional convex body can be illuminated by $2^{d}$ points.

Remark 1. Clearly, we need $2^{d}$ points to illuminate the $d$-dimensional cube.

## Motivation

Let $K$ be a convex body in $\mathbb{R}^{d}$ with non-empty interior.
Def. 1. A point $p \in \mathbb{R}^{d} \backslash K$ illuminates a boundary point $q$ of $K$ if the ray emanating from $p$ and passing through $q$ intersects the interior of $K$ (after the point $q$ ).
Def. 2. A family of exterior points of $K,\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{R}^{d} \backslash K$, illuminates $K$ if each boundary point of $K$ is illuminated by at least one of $p_{i}$ 's.

## Illumination conjecture (Boltyanski-Hadwiger, 60)

Every $d$-dimensional convex body can be illuminated by $2^{d}$ points.

Remark 1. Clearly, we need $2^{d}$ points to illuminate the $d$-dimensional cube.
Remark 2. Two conjectures above are equivalent (Boltyanski).

## Motivation

Although computing the smallest number of points illuminating a given body is very important, it does not provide any quantitative information on points of illumination. In particular, one can take such points to be very far from the body.

## Motivation

Although computing the smallest number of points illuminating a given body is very important, it does not provide any quantitative information on points of illumination. In particular, one can take such points to be very far from the body.
To control that, K. Bezdek (1992) introduced the illumination parameter, $\operatorname{ill}(K)$, of $K$ as follows:

$$
\operatorname{ill}(K)=\inf \left\{\sum_{i}\left\|p_{i}\right\|_{K} \quad \mid \quad\left\{p_{i}\right\}_{i} \text { illuminates } K\right\} .
$$

## Motivation

Although computing the smallest number of points illuminating a given body is very important, it does not provide any quantitative information on points of illumination. In particular, one can take such points to be very far from the body.
To control that, K. Bezdek (1992) introduced the illumination parameter, $\operatorname{ill}(K)$, of $K$ as follows:

$$
\operatorname{ill}(K)=\inf \left\{\sum_{i}\left\|p_{i}\right\|_{K} \quad \mid \quad\left\{p_{i}\right\}_{i} \text { illuminates } K\right\} .
$$

Here $\|x\|_{K}$ denotes the gauge (or Minkowski functional) of $K$, i.e.

$$
\|x\|_{K}=\inf \{\lambda>0 \mid x \in \lambda K\} .
$$

## Motivation

Although computing the smallest number of points illuminating a given body is very important, it does not provide any quantitative information on points of illumination. In particular, one can take such points to be very far from the body.
To control that, K. Bezdek (1992) introduced the illumination parameter, $\operatorname{ill}(K)$, of $K$ as follows:

$$
\operatorname{ill}(K)=\inf \left\{\sum_{i}\left\|p_{i}\right\|_{K} \quad \mid \quad\left\{p_{i}\right\}_{i} \text { illuminates } K\right\} .
$$

Here $\|x\|_{K}$ denotes the gauge (or Minkowski functional) of $K$, i.e.

$$
\|x\|_{K}=\inf \{\lambda>0 \mid x \in \lambda K\} .
$$

This insures that far-away points of illumination are penalized.

## Motivation

K. Bezdek posed the problem of finding the upper bound for the ill $(K)$. He also provided some estimates and conjectured that for every symmetric body $K$

$$
\operatorname{ill}(K) \geq 2 d \quad \text { and } \quad \operatorname{ill}\left(B_{2}^{d}\right)=2 d^{3 / 2}
$$

(i.e. the best illumination for the ball is given by vertices of the octahedron).

## Motivation

K. Bezdek posed the problem of finding the upper bound for the ill $(K)$. He also provided some estimates and conjectured that for every symmetric body $K$

$$
\operatorname{ill}(K) \geq 2 d \quad \text { and } \quad \operatorname{ill}\left(B_{2}^{d}\right)=2 d^{3 / 2}
$$

(i.e. the best illumination for the ball is given by vertices of the octahedron). Motivated by the notion of the illumination parameter K. Swanepoel (2004) introduced the covering parameter of a convex body $K$ by

$$
\operatorname{cov}(K)=\inf \left\{\left.\sum_{i} \frac{1}{1-\lambda_{i}} \right\rvert\, K \subset \bigcup_{i}\left(x_{i}+\lambda_{i} K\right), 0<\lambda_{i}<1, x_{i} \in \mathbb{R}^{d}\right\} .
$$

## Motivation

K. Bezdek posed the problem of finding the upper bound for the ill $(K)$. He also provided some estimates and conjectured that for every symmetric body $K$

$$
\operatorname{ill}(K) \geq 2 d \quad \text { and } \quad \operatorname{ill}\left(B_{2}^{d}\right)=2 d^{3 / 2}
$$

(i.e. the best illumination for the ball is given by vertices of the octahedron). Motivated by the notion of the illumination parameter K. Swanepoel (2004) introduced the covering parameter of a convex body $K$ by

$$
\operatorname{cov}(K)=\inf \left\{\left.\sum_{i} \frac{1}{1-\lambda_{i}} \right\rvert\, K \subset \bigcup_{i}\left(x_{i}+\lambda_{i} K\right), 0<\lambda_{i}<1, x_{i} \in \mathbb{R}^{d}\right\} .
$$

In this way homothets almost as large as $K$ are penalized.

## Motivation

K. Bezdek posed the problem of finding the upper bound for the ill $(K)$. He also provided some estimates and conjectured that for every symmetric body $K$

$$
\operatorname{ill}(K) \geq 2 d \quad \text { and } \quad \operatorname{ill}\left(B_{2}^{d}\right)=2 d^{3 / 2}
$$

(i.e. the best illumination for the ball is given by vertices of the octahedron). Motivated by the notion of the illumination parameter K. Swanepoel (2004) introduced the covering parameter of a convex body $K$ by

$$
\operatorname{cov}(K)=\inf \left\{\left.\sum_{i} \frac{1}{1-\lambda_{i}} \right\rvert\, K \subset \bigcup_{i}\left(x_{i}+\lambda_{i} K\right), 0<\lambda_{i}<1, x_{i} \in \mathbb{R}^{d}\right\} .
$$

In this way homothets almost as large as $K$ are penalized.

## Theorem (Swanepoel)

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\operatorname{ill}(K) \leq 2 \operatorname{cov}(K) \leq C 2^{d} d^{2} \ln d
$$

## Motivation

K. Bezdek posed the problem of finding the upper bound for the ill $(K)$. He also provided some estimates and conjectured that for every symmetric body $K$

$$
\operatorname{ill}(K) \geq 2 d \quad \text { and } \quad \operatorname{ill}\left(B_{2}^{d}\right)=2 d^{3 / 2}
$$

(i.e. the best illumination for the ball is given by vertices of the octahedron). Motivated by the notion of the illumination parameter K. Swanepoel (2004) introduced the covering parameter of a convex body $K$ by

$$
\operatorname{cov}(K)=\inf \left\{\left.\sum_{i} \frac{1}{1-\lambda_{i}} \right\rvert\, K \subset \bigcup_{i}\left(x_{i}+\lambda_{i} K\right), 0<\lambda_{i}<1, x_{i} \in \mathbb{R}^{d}\right\} .
$$

In this way homothets almost as large as $K$ are penalized.

## Theorem (Swanepoel)

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\operatorname{ill}(K) \leq 2 \operatorname{cov}(K) \leq C 2^{d} d^{2} \ln d
$$

Recently, K. Bezdek and M. Khan have introduced a related notion - covering index.

## Vertex index

Idea. To measure the smallest possible closeness to 0 of the vertex set of a polytope containing $K$. In other words, we want to inscribe a symmetric convex body into a polytope with small number of vertices, which are not far away from the origin.

## Vertex index

Idea. To measure the smallest possible closeness to 0 of the vertex set of a polytope containing $K$. In other words, we want to inscribe a symmetric convex body into a polytope with small number of vertices, which are not far away from the origin.

Def. Let $K$ be a symmetric convex body in $\mathbb{R}^{d}$. We introduce the vertex index of $K$ as follows:

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K} \mid K \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

## Simple properties

Below $K, L$ are symmetric convex bodies, $T$ is an invertible linear operator, $d(\cdot, \cdot)$ denotes the Banach-Mazur distance, that is

$$
d(K, L)=\inf \{\lambda>0 \mid K \subset S L \subset \lambda K, S \text { is an invertible linear operator }\} .
$$

## Simple properties

Below $K, L$ are symmetric convex bodies, $T$ is an invertible linear operator, $d(\cdot, \cdot)$ denotes the Banach-Mazur distance, that is

$$
d(K, L)=\inf \{\lambda>0 \mid K \subset S L \subset \lambda K, S \text { is an invertible linear operator }\} .
$$

Claim 1. $\operatorname{vein}(K)=\operatorname{vein}(T K)$.

## Simple properties

Below $K, L$ are symmetric convex bodies, $T$ is an invertible linear operator, $d(\cdot, \cdot)$ denotes the Banach-Mazur distance, that is

$$
d(K, L)=\inf \{\lambda>0 \mid K \subset S L \subset \lambda K, S \text { is an invertible linear operator }\} .
$$

Claim 1. $\operatorname{vein}(K)=\operatorname{vein}(T K)$.
Claim 2. $\operatorname{vein}(K) \leq d(K, L) \cdot \operatorname{vein}(L)$.

## Simple properties

Below $K, L$ are symmetric convex bodies, $T$ is an invertible linear operator, $d(\cdot, \cdot)$ denotes the Banach-Mazur distance, that is

$$
d(K, L)=\inf \{\lambda>0 \mid K \subset S L \subset \lambda K, S \text { is an invertible linear operator }\} .
$$

Claim 1. $\operatorname{vein}(K)=\operatorname{vein}(T K)$.
Claim 2. $\operatorname{vein}(K) \leq d(K, L) \cdot \operatorname{vein}(L)$.
Claim 3. $\operatorname{vein}(K) \leq \operatorname{ill}(K)$ and for smooth $K$ one has $\operatorname{vein}(K)=\operatorname{ill}(K)$.

## Simple properties

Below $K, L$ are symmetric convex bodies, $T$ is an invertible linear operator, $d(\cdot, \cdot)$ denotes the Banach-Mazur distance, that is

$$
d(K, L)=\inf \{\lambda>0 \mid K \subset S L \subset \lambda K, S \text { is an invertible linear operator }\}
$$

Claim 1. vein $(K)=\operatorname{vein}(T K)$.
Claim 2. $\operatorname{vein}(K) \leq d(K, L) \cdot \operatorname{vein}(L)$.
Claim 3. vein $(K) \leq \operatorname{ill}(K)$ and for smooth $K$ one has $\operatorname{vein}(K)=\operatorname{ill}(K)$.
Remark. Note that $\operatorname{ill}\left(B_{\infty}^{d}\right)=2^{d}$, while below we will see that vein $(K) \leq C d^{3 / 2}$. It shows that $\operatorname{ill}(K)$ is rather unstable, while Claim 2 shows that vein $(K)$ is stable.

## Results

## Theorem

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\frac{d^{3 / 2}}{\sqrt{2 \pi e} \operatorname{ovr}(K)} \leq \operatorname{vein}(K) \leq 24 d^{3 / 2}
$$

Here $\operatorname{ovr}(K)$ is the outer volume ratio of $K, \operatorname{ovr}(K)=\inf (\operatorname{Vol}(\mathcal{E}) / \operatorname{Vol}(K))^{1 / d}$, where the infimum is taken over all ellipsoids $\mathcal{E} \supset K$ and $\operatorname{Vol}(\cdot)$ denotes the volume.

## Results

## Theorem

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\frac{d^{3 / 2}}{\sqrt{2 \pi e} \operatorname{ovr}(K)} \leq \operatorname{vein}(K) \leq 24 d^{3 / 2}
$$

Here $\operatorname{ovr}(K)$ is the outer volume ratio of $K, \operatorname{ovr}(K)=\inf (\operatorname{Vol}(\mathcal{E}) / \operatorname{Vol}(K))^{1 / d}$, where the infimum is taken over all ellipsoids $\mathcal{E} \supset K$ and $\operatorname{Vol}(\cdot)$ denotes the volume.

Remark. For many convex bodies the lower bound is sharp, namely for

## Results

## Theorem

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\frac{d^{3 / 2}}{\sqrt{2 \pi e} \operatorname{ovr}(K)} \leq \operatorname{vein}(K) \leq 24 d^{3 / 2}
$$

Here $\operatorname{ovr}(K)$ is the outer volume ratio of $K, \operatorname{ovr}(K)=\inf (\operatorname{Vol}(\mathcal{E}) / \operatorname{Vol}(K))^{1 / d}$, where the infimum is taken over all ellipsoids $\mathcal{E} \supset K$ and $\operatorname{Vol}(\cdot)$ denotes the volume.

Remark. For many convex bodies the lower bound is sharp, namely for

1. the unit balls of $\ell_{p}$, denoted by $B_{p}^{d}$ :
for $p \geq 2$ : $\operatorname{ovr}\left(B_{p}^{d}\right) \leq C$; for $1 \leq p \leq 2: \operatorname{ovr}\left(B_{p}^{d}\right) \approx d^{1 / p-1 / 2}, \operatorname{vein}\left(B_{p}^{d}\right) \approx d^{2-1 / p}$

## Results

## Theorem

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\frac{d^{3 / 2}}{\sqrt{2 \pi e} \operatorname{ovr}(K)} \leq \operatorname{vein}(K) \leq 24 d^{3 / 2}
$$

Here $\operatorname{ovr}(K)$ is the outer volume ratio of $K, \operatorname{ovr}(K)=\inf (\operatorname{Vol}(\mathcal{E}) / \operatorname{Vol}(K))^{1 / d}$, where the infimum is taken over all ellipsoids $\mathcal{E} \supset K$ and $\operatorname{Vol}(\cdot)$ denotes the volume.

Remark. For many convex bodies the lower bound is sharp, namely for

1. the unit balls of $\ell_{p}$, denoted by $B_{p}^{d}$ :
for $p \geq 2$ : $\operatorname{ovr}\left(B_{p}^{d}\right) \leq C$; for $1 \leq p \leq 2: \operatorname{ovr}\left(B_{p}^{d}\right) \approx d^{1 / p-1 / 2}, \operatorname{vein}\left(B_{p}^{d}\right) \approx d^{2-1 / p}$
2. bodies with bounded outer volume ratio, $\operatorname{vein}(K) \approx d^{3 / 2}$, e.g. $B_{p}^{d}$ for $p \geq 2$.

## Results

## Theorem

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has

$$
\frac{d^{3 / 2}}{\sqrt{2 \pi e} \operatorname{ovr}(K)} \leq \operatorname{vein}(K) \leq 24 d^{3 / 2}
$$

Here $\operatorname{ovr}(K)$ is the outer volume ratio of $K, \operatorname{ovr}(K)=\inf (\operatorname{Vol}(\mathcal{E}) / \operatorname{Vol}(K))^{1 / d}$, where the infimum is taken over all ellipsoids $\mathcal{E} \supset K$ and $\operatorname{Vol}(\cdot)$ denotes the volume.

Remark. For many convex bodies the lower bound is sharp, namely for

1. the unit balls of $\ell_{p}$, denoted by $B_{p}^{d}$ :
for $p \geq 2$ : $\operatorname{ovr}\left(B_{p}^{d}\right) \leq C$; for $1 \leq p \leq 2: \operatorname{ovr}\left(B_{p}^{d}\right) \approx d^{1 / p-1 / 2}, \operatorname{vein}\left(B_{p}^{d}\right) \approx d^{2-1 / p}$
2. bodies with bounded outer volume ratio, $\operatorname{vein}(K) \approx d^{3 / 2}$, e.g. $B_{p}^{d}$ for $p \geq 2$.
3. some bodies with large ovr, e.g. vein $\left(B_{1}^{d}\right)=2 d$ and $\operatorname{ovr}\left(B_{1}^{d}\right) \approx \sqrt{d}$.

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ?

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{Ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ? Answer: NO. There exists a body $K$ such that

$$
\operatorname{ovr}(K) \geq c \sqrt{\frac{d}{\ln (2 d)}} \quad \text { and } \quad \operatorname{vein}(K) \geq c d^{3 / 2}
$$

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ? Answer: NO. There exists a body $K$ such that

$$
\operatorname{ovr}(K) \geq c \sqrt{\frac{d}{\ln (2 d)}} \quad \text { and } \quad \operatorname{vein}(K) \geq c d^{3 / 2}
$$

To construct such a body we use a random polytope $P$ :

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ?
Answer: NO. There exists a body $K$ such that

$$
\operatorname{ovr}(K) \geq c \sqrt{\frac{d}{\ln (2 d)}} \quad \text { and } \quad \operatorname{vein}(K) \geq c d^{3 / 2}
$$

To construct such a body we use a random polytope $P$ :
Take $d^{2}$ random points uniformly distributed on the sphere and take absolute convex hull of them with the canonical basis (such a construction was first used by Gluskin to estimate the diameter of Minkowski compactum).

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ?
Answer: NO. There exists a body $K$ such that

$$
\operatorname{ovr}(K) \geq c \sqrt{\frac{d}{\ln (2 d)}} \quad \text { and } \quad \operatorname{vein}(K) \geq c d^{3 / 2}
$$

To construct such a body we use a random polytope $P$ :
Take $d^{2}$ random points uniformly distributed on the sphere and take absolute convex hull of them with the canonical basis (such a construction was first used by Gluskin to estimate the diameter of Minkowski compactum). By a well-known volume estimates

$$
\operatorname{ovr}(P) \geq c \sqrt{d / \ln (2 d)} \quad \text { and one can show that } \quad \operatorname{vein}(P) \geq c d^{3 / 2} .
$$

## Results

Question. Is it true that $\operatorname{vein}(K) \approx \frac{d^{3 / 2}}{\operatorname{ovr}(K)}$, i.e. $\operatorname{vein}(K) \cdot \operatorname{ovr}(K) \approx d^{3 / 2}$ ?
Answer: NO. There exists a body $K$ such that

$$
\operatorname{ovr}(K) \geq c \sqrt{\frac{d}{\ln (2 d)}} \quad \text { and } \quad \operatorname{vein}(K) \geq c d^{3 / 2}
$$

To construct such a body we use a random polytope $P$ :
Take $d^{2}$ random points uniformly distributed on the sphere and take absolute convex hull of them with the canonical basis (such a construction was first used by Gluskin to estimate the diameter of Minkowski compactum). By a well-known volume estimates

$$
\operatorname{ovr}(P) \geq c \sqrt{d / \ln (2 d)} \quad \text { and one can show that } \quad \operatorname{vein}(P) \geq c d^{3 / 2} .
$$

Thus

$$
\operatorname{ovr}(P) \cdot \operatorname{vein}(P) \geq \frac{c d^{2}}{\sqrt{\ln (2 d)}}
$$

## Results

## Theorem.

$\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad$ and $\quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}$

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.
Theorem. The conjecture is true in dimensions 2 and 3:

$$
\operatorname{vein}\left(B_{2}^{2}\right)=4 \sqrt{2} \quad \text { and } \quad \operatorname{vein}\left(B_{2}^{3}\right)=6 \sqrt{3} .
$$

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.
Theorem. The conjecture is true in dimensions 2 and 3:

$$
\operatorname{vein}\left(B_{2}^{2}\right)=4 \sqrt{2} \quad \text { and } \quad \operatorname{vein}\left(B_{2}^{3}\right)=6 \sqrt{3} .
$$

As a consequence, if $K \subset \mathbb{R}^{2}, L \subset \mathbb{R}^{3}$ are symmetric convex bodies, then

$$
4 \leq \operatorname{vein}(K) \leq 6 \quad \text { and } \quad 6 \leq \operatorname{vein}(L) \leq 18
$$

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.
Theorem. The conjecture is true in dimensions 2 and 3:

$$
\operatorname{vein}\left(B_{2}^{2}\right)=4 \sqrt{2} \quad \text { and } \quad \operatorname{vein}\left(B_{2}^{3}\right)=6 \sqrt{3} .
$$

As a consequence, if $K \subset \mathbb{R}^{2}, L \subset \mathbb{R}^{3}$ are symmetric convex bodies, then

$$
4 \leq \operatorname{vein}(K) \leq 6 \quad \text { and } \quad 6 \leq \operatorname{vein}(L) \leq 18
$$

Remarks. 1. As an example of the octahedron shows, the lower estimates are sharp.

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.
Theorem. The conjecture is true in dimensions 2 and 3:

$$
\operatorname{vein}\left(B_{2}^{2}\right)=4 \sqrt{2} \quad \text { and } \quad \operatorname{vein}\left(B_{2}^{3}\right)=6 \sqrt{3} .
$$

As a consequence, if $K \subset \mathbb{R}^{2}, L \subset \mathbb{R}^{3}$ are symmetric convex bodies, then

$$
4 \leq \operatorname{vein}(K) \leq 6 \quad \text { and } \quad 6 \leq \operatorname{vein}(L) \leq 18
$$

Remarks. 1. As an example of the octahedron shows, the lower estimates are sharp.
2. The regular hexagon shows that the upper estimate 6 in the planar case is sharp.

## Results

## Theorem.

$$
\operatorname{vein}\left(B_{1}^{d}\right)=2 d, \quad \frac{d^{3 / 2}}{9} \leq \operatorname{vein}\left(B_{\infty}^{d}\right) \leq 5 d^{3 / 2}, \quad \text { and } \quad \frac{d^{3 / 2}}{\sqrt{3}} \leq \operatorname{vein}\left(B_{2}^{d}\right) \leq 2 d^{3 / 2}
$$

Conjecture. vein $\left(B_{2}^{d}\right)=2 d^{3 / 2}$.
Theorem. The conjecture is true in dimensions 2 and 3:

$$
\operatorname{vein}\left(B_{2}^{2}\right)=4 \sqrt{2} \quad \text { and } \quad \operatorname{vein}\left(B_{2}^{3}\right)=6 \sqrt{3} .
$$

As a consequence, if $K \subset \mathbb{R}^{2}, L \subset \mathbb{R}^{3}$ are symmetric convex bodies, then

$$
4 \leq \operatorname{vein}(K) \leq 6 \quad \text { and } \quad 6 \leq \operatorname{vein}(L) \leq 18
$$

Remarks. 1. As an example of the octahedron shows, the lower estimates are sharp. 2. The regular hexagon shows that the upper estimate 6 in the planar case is sharp.
3. We do not know the best possible upper estimate in the 3-dimensional case.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has $\quad$ vein $(K) \geq 2 d$.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices. Clearly, if $k<d, P$ cannot be symmetric and, clearly, $P$ is most asymmetric for $k=1$.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices. Clearly, if $k<d, P$ cannot be symmetric and, clearly, $P$ is most asymmetric for $k=1$. In an earlier work we proved that if $L=-L$ then

$$
d(P, L) \geq \max _{i}\left\|-x_{i}\right\|_{P} \geq \frac{d}{k}
$$

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices. Clearly, if $k<d, P$ cannot be symmetric and, clearly, $P$ is most asymmetric for $k=1$. In an earlier work we proved that if $L=-L$ then

$$
d(P, L) \geq \max _{i}\left\|-x_{i}\right\|_{P} \geq \frac{d}{k} .
$$

The next theorem shows that the same lower bound holds not only for the worst vertex, but in average as well.

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices. Clearly, if $k<d, P$ cannot be symmetric and, clearly, $P$ is most asymmetric for $k=1$. In an earlier work we proved that if $L=-L$ then

$$
d(P, L) \geq \max _{i}\left\|-x_{i}\right\|_{P} \geq \frac{d}{k}
$$

The next theorem shows that the same lower bound holds not only for the worst vertex, but in average as well.

## Theorem.

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{P} \geq \frac{m}{2 k} \geq \frac{d}{2 k} .
$$

## Results

Theorem. For every symmetric convex body $K$ in $\mathbb{R}^{d}$ one has vein $(K) \geq 2 d$.
The proof is based on the following result on the asymmetry of convex polytopes with a few vertices.
Let $1 \leq k \leq d$ and $m=k+d$. By $P=P_{m}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m}$ denote a convex polytope in $\mathbb{R}^{d}$ with $m$ vertices. Clearly, if $k<d, P$ cannot be symmetric and, clearly, $P$ is most asymmetric for $k=1$. In an earlier work we proved that if $L=-L$ then

$$
d(P, L) \geq \max _{i}\left\|-x_{i}\right\|_{P} \geq \frac{d}{k}
$$

The next theorem shows that the same lower bound holds not only for the worst vertex, but in average as well.

## Theorem.

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{P} \geq \frac{m}{2 k} \geq \frac{d}{2 k} .
$$

We show how the latter theorem implies the former one.

## Proofs

## Proof. Let

$$
K \subset P=\operatorname{conv}\left\{p_{i}\right\}_{i \leq m} .
$$

WLOG we can assume that $\left\|p_{i}\right\|_{K} \geq 1$ for every $i$. If $m \geq 2 d$ then we trivially have

$$
\sum_{i=1}^{m}\left\|p_{i}\right\|_{K} \geq m \geq 2 d
$$

## Proofs

## Proof. Let

$$
K \subset P=\operatorname{conv}\left\{p_{i}\right\}_{i \leq m}
$$

WLOG we can assume that $\left\|p_{i}\right\|_{K} \geq 1$ for every $i$. If $m \geq 2 d$ then we trivially have

$$
\sum_{i=1}^{m}\left\|p_{i}\right\|_{K} \geq m \geq 2 d
$$

Assume $m<2 d$. Since $K=-K \subset P$, we have $\|x\|_{K} \geq\|-x\|_{P}$ for every $x \in \mathbb{R}^{d}$. Therefore, applying our Theorem, we obtain

$$
\sum_{i=1}^{m}\left\|p_{i}\right\|_{K} \geq \sum_{i=1}^{m}\left\|-p_{i}\right\|_{P} \geq \frac{m^{2}}{2 k}=\frac{(d+k)^{2}}{2 k} \geq 2 d
$$

## Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John's decomposition of the Identity yield the following

## Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John's decomposition of the Identity yield the following

## Corollary.

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ there exists a symmetric convex polytope $P$ in $\mathbb{R}^{d}$ with $8 d$ vertices such that

$$
d(K, P) \leq 3 \sqrt{d}
$$

## Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John's decomposition of the Identity yield the following

## Corollary.

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ there exists a symmetric convex polytope $P$ in $\mathbb{R}^{d}$ with $8 d$ vertices such that

$$
d(K, P) \leq 3 \sqrt{d}
$$

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the number of vertices.

## Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John's decomposition of the Identity yield the following

## Corollary.

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ there exists a symmetric convex polytope $P$ in $\mathbb{R}^{d}$ with $8 d$ vertices such that

$$
d(K, P) \leq 3 \sqrt{d}
$$

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his strong result on approximation of convex bodies by polytopes.

## Proof of an upper bound on vertex index

A recent result of Batson, Spielman, and Srivastava and the John's decomposition of the Identity yield the following

## Corollary.

For every symmetric convex body $K$ in $\mathbb{R}^{d}$ there exists a symmetric convex polytope $P$ in $\mathbb{R}^{d}$ with $8 d$ vertices such that

$$
d(K, P) \leq 3 \sqrt{d}
$$

Remark. A previous bound of Rudelson would lead to the logarithmic factor in the number of vertices.

Remark. Very recently Barvinok has used the same idea as an initial step in his strong result on approximation of convex bodies by polytopes.

Using Claim 2 (or just direct computations) we obtain

$$
\operatorname{vein}(K) \leq 3 \sqrt{d} \operatorname{vein}(P) \leq 24 d^{3 / 2}
$$

## Proof of a lower bound on vertex index

WLOG we assume that $B_{2}^{d}$ is the ellipsoid of minimal volume for $K$. Then $|\cdot| \leq\|\cdot\|_{K}$.

## Proof of a lower bound on vertex index

WLOG we assume that $B_{2}^{d}$ is the ellipsoid of minimal volume for $K$. Then $|\cdot| \leq\|\cdot\|_{K}$. Let $\left\{p_{i}\right\}_{1}^{N} \in \mathbb{R}^{d}$ be such that $K \subset \operatorname{conv}\left\{p_{i}\right\}_{1}^{N}$. Clearly $N \geq d+1$. Denote

$$
L:=\operatorname{absconv}\left\{p_{i}\right\}_{1}^{N} \quad \text { then } \quad L^{\circ}=\left\{x| |\left\langle x, p_{i}\right\rangle \mid \leq 1 \text { for every } i \leq N\right\} .
$$

## Proof of a lower bound on vertex index

WLOG we assume that $B_{2}^{d}$ is the ellipsoid of minimal volume for $K$. Then $|\cdot| \leq\|\cdot\|_{K}$. Let $\left\{p_{i}\right\}_{1}^{N} \in \mathbb{R}^{d}$ be such that $K \subset \operatorname{conv}\left\{p_{i}\right\}_{1}^{N}$. Clearly $N \geq d+1$. Denote

$$
L:=\operatorname{absconv}\left\{p_{i}\right\}_{1}^{N} \quad \text { then } \quad L^{\circ}=\left\{x| |\left\langle x, p_{i}\right\rangle \mid \leq 1 \text { for every } i \leq N\right\} .
$$

A Theorem of Ball and Pajor implies

$$
\operatorname{vol}\left(L^{\circ}\right) \geq\left(d / \sum_{i=1}^{N}\left|p_{i}\right|\right)^{d}
$$

## Proof of a lower bound on vertex index

WLOG we assume that $B_{2}^{d}$ is the ellipsoid of minimal volume for $K$. Then $|\cdot| \leq\|\cdot\|_{K}$. Let $\left\{p_{i}\right\}_{1}^{N} \in \mathbb{R}^{d}$ be such that $K \subset \operatorname{conv}\left\{p_{i}\right\}_{1}^{N}$. Clearly $N \geq d+1$. Denote

$$
L:=\operatorname{absconv}\left\{p_{i}\right\}_{1}^{N} \quad \text { then } \quad L^{\circ}=\left\{x| |\left\langle x, p_{i}\right\rangle \mid \leq 1 \text { for every } i \leq N\right\} .
$$

A Theorem of Ball and Pajor implies

$$
\operatorname{vol}\left(L^{\circ}\right) \geq\left(d / \sum_{i=1}^{N}\left|p_{i}\right|\right)^{d}
$$

By Santaló inequality $\operatorname{vol}(L) \operatorname{vol}\left(L^{\circ}\right) \leq\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}$ and since $K \subset L$, we obtain

$$
\operatorname{vol}(K) \leq \operatorname{vol}(L) \leq \frac{\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}}{\operatorname{vol}\left(L^{\circ}\right)} \leq\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}\left(\frac{1}{d} \sum_{i=1}^{N}\left|p_{i}\right|\right)^{d} .
$$

## Proof of a lower bound on vertex index

WLOG we assume that $B_{2}^{d}$ is the ellipsoid of minimal volume for $K$. Then $|\cdot| \leq\|\cdot\|_{K}$. Let $\left\{p_{i}\right\}_{1}^{N} \in \mathbb{R}^{d}$ be such that $K \subset \operatorname{conv}\left\{p_{i}\right\}_{1}^{N}$. Clearly $N \geq d+1$. Denote

$$
L:=\operatorname{absconv}\left\{p_{i}\right\}_{1}^{N} \quad \text { then } \quad L^{\circ}=\left\{x| |\left\langle x, p_{i}\right\rangle \mid \leq 1 \text { for every } i \leq N\right\} .
$$

A Theorem of Ball and Pajor implies

$$
\operatorname{vol}\left(L^{\circ}\right) \geq\left(d / \sum_{i=1}^{N}\left|p_{i}\right|\right)^{d}
$$

By Santaló inequality $\operatorname{vol}(L) \operatorname{vol}\left(L^{\circ}\right) \leq\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}$ and since $K \subset L$, we obtain

$$
\operatorname{vol}(K) \leq \operatorname{vol}(L) \leq \frac{\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}}{\operatorname{vol}\left(L^{\circ}\right)} \leq\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{2}\left(\frac{1}{d} \sum_{i=1}^{N}\left|p_{i}\right|\right)^{d} .
$$

Finally, since $B_{2}^{d}$ is the minimal volume ellipsoid for $K$ and $\|\cdot\|_{K} \geq|\cdot|$, we have

$$
\frac{1}{\operatorname{ovr}(K)}=\left(\frac{\operatorname{vol}(K)}{\operatorname{vol}\left(B_{2}^{d}\right)}\right)^{1 / d} \leq\left(\operatorname{vol}\left(B_{2}^{d}\right)\right)^{1 / d} \frac{1}{d} \sum_{i=1}^{N}\left\|p_{i}\right\|_{K} \leq \frac{\sqrt{2 \pi e}}{d^{3 / 2}} \sum_{i=1}^{N}\left\|p_{i}\right\|_{K}
$$

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k} .
$$

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k}
$$

Proof. Consider the linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ defined by $T e_{i}=x_{i}$.

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k} .
$$

Proof. Consider the linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ defined by $T e_{i}=x_{i}$. Let $L=\operatorname{Ker} T$. Clearly, $\operatorname{dim} L=k$. Let $P$ be the orthogonal projection onto $L^{\perp}$.

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k}
$$

Proof. Consider the linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ defined by $T e_{i}=x_{i}$. Let $L=\operatorname{Ker} T$. Clearly, $\operatorname{dim} L=k$. Let $P$ be the orthogonal projection onto $L^{\perp}$.

Note

$$
K^{\circ}=\left\{f \in \mathbb{R}^{d} \mid\left\langle f, x_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\},
$$

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k} .
$$

Proof. Consider the linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ defined by $T e_{i}=x_{i}$. Let $L=\operatorname{Ker} T$. Clearly, $\operatorname{dim} L=k$. Let $P$ be the orthogonal projection onto $L^{\perp}$.

Note

$$
K^{\circ}=\left\{f \in \mathbb{R}^{d} \mid\left\langle f, x_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\},
$$

Thus

$$
A:=\sum_{i=1}^{m}\left\|-x_{i}\right\|_{K}=\sum_{i=1}^{m} \sup \left\{\left\langle f,-x_{i}\right\rangle \mid f \in \mathbb{R}^{d},\left\langle f, x_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\} .
$$

## Proof of "asymmetry" theorem.

Theorem. If $K=\operatorname{conv}\left\{x_{i}\right\}_{i \leq m} \subset \mathbb{R}^{d}$ with $m=k+d \leq 2 d$ then

$$
\frac{1}{m} \sum_{i=1}^{m}\left\|-x_{i}\right\|_{K} \geq \frac{m}{2 k} \geq \frac{d}{2 k}
$$

Proof. Consider the linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ defined by $T e_{i}=x_{i}$. Let $L=\operatorname{Ker} T$. Clearly, $\operatorname{dim} L=k$. Let $P$ be the orthogonal projection onto $L^{\perp}$.
Note

$$
K^{\circ}=\left\{f \in \mathbb{R}^{d} \mid\left\langle f, x_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\},
$$

Thus

$$
A:=\sum_{i=1}^{m}\left\|-x_{i}\right\|_{K}=\sum_{i=1}^{m} \sup \left\{\left\langle f,-x_{i}\right\rangle \mid f \in \mathbb{R}^{d},\left\langle f, x_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\} .
$$

Using $\left\langle f, x_{i}\right\rangle=\left\langle f, T e_{i}\right\rangle=\left\langle T^{*} f, e_{i}\right\rangle$, we obtain

$$
A=\sum_{i=1}^{m} \sup \left\{\left\langle h,-e_{i}\right\rangle \mid h \in \mathbb{R}^{m}, h \in L^{\perp},\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}
$$

## Proof

$$
A=\sum_{i=1}^{m} \sup \left\{\left\langle h,-e_{i}\right\rangle \mid h \in \mathbb{R}^{m}, h \in L^{\perp},\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}
$$

## Proof

$$
A=\sum_{i=1}^{m} \sup \left\{\left\langle h,-e_{i}\right\rangle \mid h \in \mathbb{R}^{m}, h \in L^{\perp},\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}
$$

## Denote

$$
S:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}, \quad Q_{i}:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{i}\right\rangle \geq-1\right\}
$$

## Proof

$$
A=\sum_{i=1}^{m} \sup \left\{\left\langle h,-e_{i}\right\rangle \mid h \in \mathbb{R}^{m}, h \in L^{\perp},\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}
$$

Denote
$S:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{j}\right\rangle \leq 1\right.$ for every $\left.j \leq m\right\}, \quad Q_{i}:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{i}\right\rangle \geq-1\right\}$.
Then

$$
S^{\circ}=\left\{h \in \mathbb{R}^{m} \mid 0 \leq\left\langle h, e_{j}\right\rangle \text { for every } j \leq m, \text { and } \sum_{j=1}^{m}\left\langle h, e_{j}\right\rangle \leq 1\right\}
$$

and

$$
Q_{i}^{\circ}=\left\{h \in \mathbb{R}^{m} \mid-1 \leq\left\langle h, e_{i}\right\rangle \leq 0,\left\langle h, e_{j}\right\rangle=0 \text { for } j \neq i\right\} .
$$

## Proof

$$
A=\sum_{i=1}^{m} \sup \left\{\left\langle h,-e_{i}\right\rangle \mid h \in \mathbb{R}^{m}, h \in L^{\perp},\left\langle h, e_{j}\right\rangle \leq 1 \text { for every } j \leq m\right\}
$$

Denote
$S:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{j}\right\rangle \leq 1\right.$ for every $\left.j \leq m\right\}, \quad Q_{i}:=\left\{h \in \mathbb{R}^{m} \mid\left\langle h, e_{i}\right\rangle \geq-1\right\}$.
Then

$$
S^{\circ}=\left\{h \in \mathbb{R}^{m} \mid 0 \leq\left\langle h, e_{j}\right\rangle \text { for every } j \leq m, \text { and } \sum_{j=1}^{m}\left\langle h, e_{j}\right\rangle \leq 1\right\}
$$

and

$$
Q_{i}^{\circ}=\left\{h \in \mathbb{R}^{m} \mid-1 \leq\left\langle h, e_{i}\right\rangle \leq 0,\left\langle h, e_{j}\right\rangle=0 \text { for } j \neq i\right\} .
$$

Therefore

$$
\|z\|_{S^{\circ}}:=\left\{\begin{array}{l}
\sum_{j=1}^{m}\left\langle z, e_{j}\right\rangle \text { if }\left\langle z, e_{j}\right\rangle \geq 0 \text { for every } j \leq m, \\
\infty \text { otherwise } .
\end{array}\right.
$$

## Proof

Then $\|z\|_{P S^{\circ}}=\inf _{y \in L}\|z+y\|_{S^{\circ}}$

$$
=\inf \left\{\sum_{j=1}^{m}\left\langle z+y, e_{j}\right\rangle \mid y \in L,\left\langle y, e_{j}\right\rangle \geq-\left\langle z, e_{j}\right\rangle \quad \text { for every } j \leq m\right\} .
$$

## Proof

Then $\|z\|_{P S^{\circ}}=\inf _{y \in L}\|z+y\|_{S^{\circ}}$

$$
=\inf \left\{\sum_{j=1}^{m}\left\langle z+y, e_{j}\right\rangle \mid y \in L,\left\langle y, e_{j}\right\rangle \geq-\left\langle z, e_{j}\right\rangle \text { for every } j \leq m\right\} .
$$

By duality,

$$
\begin{aligned}
A & =\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\left\langle h,-e_{i}\right\rangle=\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\|h\|_{Q_{i}}=\sum_{i=1}^{m} \sup _{h \in Q_{i}^{\circ}}\|h\|_{P S^{\circ}}=\sum_{i=1}^{m}\left\|-e_{i}\right\|_{P S^{\circ}} \\
& =\sum_{i=1}^{m} \inf \left\{\sum_{j=1}^{m}\left\langle y, e_{j}\right\rangle-1 \mid y \in L,\left\langle y, e_{i}\right\rangle \geq 1,\left\langle y, e_{j}\right\rangle \geq 0 \text { for every } j \leq m\right\} .
\end{aligned}
$$

## Proof

Then $\|z\|_{P S^{\circ}}=\inf _{y \in L}\|z+y\|_{S^{\circ}}$

$$
=\inf \left\{\sum_{j=1}^{m}\left\langle z+y, e_{j}\right\rangle \mid y \in L,\left\langle y, e_{j}\right\rangle \geq-\left\langle z, e_{j}\right\rangle \quad \text { for every } j \leq m\right\} .
$$

By duality,

$$
\begin{aligned}
A & =\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\left\langle h,-e_{i}\right\rangle=\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\|h\|_{Q_{i}}=\sum_{i=1}^{m} \sup _{h \in Q_{i}^{\circ}}\|h\|_{P S^{\circ}}=\sum_{i=1}^{m}\left\|-e_{i}\right\|_{P S^{\circ}} \\
& =\sum_{i=1}^{m} \inf \left\{\sum_{j=1}^{m}\left\langle y, e_{j}\right\rangle-1 \mid y \in L,\left\langle y, e_{i}\right\rangle \geq 1,\left\langle y, e_{j}\right\rangle \geq 0 \text { for every } j \leq m\right\} .
\end{aligned}
$$

Assume that for every $i \leq m$ the latter infimum attains on $y_{i} \in L$. Let $y_{i j}:=\left\langle y_{i}, e_{j}\right\rangle$. Then $y_{i j} \geq 0$ and $y_{i i} \geq 1$, and the matrix $\left\{y_{i j}\right\}$ has rank at most $k$.

## Proof

Then $\|z\|_{P S^{\circ}}=\inf _{y \in L}\|z+y\|_{S^{\circ}}$

$$
=\inf \left\{\sum_{j=1}^{m}\left\langle z+y, e_{j}\right\rangle \mid y \in L,\left\langle y, e_{j}\right\rangle \geq-\left\langle z, e_{j}\right\rangle \quad \text { for every } j \leq m\right\} .
$$

By duality,

$$
\begin{aligned}
A & =\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\left\langle h,-e_{i}\right\rangle=\sum_{i=1}^{m} \sup _{h \in S \cap L^{\perp}}\|h\|_{Q_{i}}=\sum_{i=1}^{m} \sup _{h \in Q_{i}^{\circ}}\|h\|_{P S^{\circ}}=\sum_{i=1}^{m}\left\|-e_{i}\right\|_{P S^{\circ}} \\
& =\sum_{i=1}^{m} \inf \left\{\sum_{j=1}^{m}\left\langle y, e_{j}\right\rangle-1 \mid y \in L,\left\langle y, e_{i}\right\rangle \geq 1,\left\langle y, e_{j}\right\rangle \geq 0 \text { for every } j \leq m\right\} .
\end{aligned}
$$

Assume that for every $i \leq m$ the latter infimum attains on $y_{i} \in L$. Let $y_{i j}:=\left\langle y_{i}, e_{j}\right\rangle$. Then $y_{i j} \geq 0$ and $y_{i i} \geq 1$, and the matrix $\left\{y_{i j}\right\}$ has rank at most $k$.
For such matrices (Lemma) one has

$$
A=\sum_{i=1}^{m} \sum_{j=1}^{m} y_{i j}-m \geq \frac{m(m-1)}{2 k-1} \geq \frac{m^{2}}{2 k} .
$$

## Proof of Lemma.

Lemma. Let $\Lambda=\left\{\lambda_{i j}\right\}$ be an $m \times m$ matrix of rank $k$ with nonnegative entries such that $\lambda_{i i} \geq 1$ for every $i \leq m$. Then

$$
\forall m \quad \sum_{i, j} \lambda_{i j} \geq 3 m-2 k \quad \text { and } \quad \forall m \geq 2 k \quad \sum_{i, j} \lambda_{i j} \geq m+\frac{m(m-1)}{2 k-1}
$$

## Proof of Lemma.

Lemma. Let $\Lambda=\left\{\lambda_{i j}\right\}$ be an $m \times m$ matrix of rank $k$ with nonnegative entries such that $\lambda_{i i} \geq 1$ for every $i \leq m$. Then

$$
\forall m \quad \sum_{i, j} \lambda_{i j} \geq 3 m-2 k \quad \text { and } \quad \forall m \geq 2 k \quad \sum_{i, j} \lambda_{i j} \geq m+\frac{m(m-1)}{2 k-1} .
$$

Proof. WLOG $\lambda_{i i}=1$ for every $i$ (otherwise we pass to the matrix $\left\{\lambda_{i j} / \lambda_{i i}\right\}_{i j}$ ).

## Proof of Lemma.

Lemma. Let $\Lambda=\left\{\lambda_{i j}\right\}$ be an $m \times m$ matrix of rank $k$ with nonnegative entries such that $\lambda_{i i} \geq 1$ for every $i \leq m$. Then

$$
\forall m \quad \sum_{i, j} \lambda_{i j} \geq 3 m-2 k \quad \text { and } \quad \forall m \geq 2 k \quad \sum_{i, j} \lambda_{i j} \geq m+\frac{m(m-1)}{2 k-1} .
$$

Proof. WLOG $\lambda_{i i}=1$ for every $i$ (otherwise we pass to the matrix $\left\{\lambda_{i j} / \lambda_{i i}\right\}_{i j}$ ). Consider $T=\Lambda-I$, where $I$ is the identity and denote its entries by $t_{i j}$. Clearly, $t_{i j} \geq 0$ and $t_{i i}=0$ for every $i, j$. By $\lambda_{j}$ denote the eigenvalues of $T$.

## Proof of Lemma.

Lemma. Let $\Lambda=\left\{\lambda_{i j}\right\}$ be an $m \times m$ matrix of rank $k$ with nonnegative entries such that $\lambda_{i i} \geq 1$ for every $i \leq m$. Then

$$
\forall m \quad \sum_{i, j} \lambda_{i j} \geq 3 m-2 k \quad \text { and } \quad \forall m \geq 2 k \quad \sum_{i, j} \lambda_{i j} \geq m+\frac{m(m-1)}{2 k-1} .
$$

Proof. WLOG $\lambda_{i i}=1$ for every $i$ (otherwise we pass to the matrix $\left\{\lambda_{i j} / \lambda_{i i}\right\}_{i j}$ ). Consider $T=\Lambda-I$, where $I$ is the identity and denote its entries by $t_{i j}$. Clearly, $t_{i j} \geq 0$ and $t_{i i}=0$ for every $i, j$. By $\lambda_{j}$ denote the eigenvalues of $T$.
Since $\Lambda$ is of rank $k$, at least $m-k$ of eigenvalues of $T$ are equal to -1

$$
0=\sum_{i=1}^{m} t_{i i}=\operatorname{Trace} T=\sum_{i=1}^{m} \lambda_{i},
$$

## Proof of Lemma.

Lemma. Let $\Lambda=\left\{\lambda_{i j}\right\}$ be an $m \times m$ matrix of rank $k$ with nonnegative entries such that $\lambda_{i i} \geq 1$ for every $i \leq m$. Then

$$
\forall m \quad \sum_{i, j} \lambda_{i j} \geq 3 m-2 k \quad \text { and } \quad \forall m \geq 2 k \quad \sum_{i, j} \lambda_{i j} \geq m+\frac{m(m-1)}{2 k-1} .
$$

Proof. WLOG $\lambda_{i i}=1$ for every $i$ (otherwise we pass to the matrix $\left\{\lambda_{i j} / \lambda_{i i}\right\}_{i j}$ ). Consider $T=\Lambda-I$, where $I$ is the identity and denote its entries by $t_{i j}$. Clearly, $t_{i j} \geq 0$ and $t_{i i}=0$ for every $i, j$. By $\lambda_{j}$ denote the eigenvalues of $T$.
Since $\Lambda$ is of rank $k$, at least $m-k$ of eigenvalues of $T$ are equal to -1

$$
0=\sum_{i=1}^{m} t_{i i}=\operatorname{Trace} T=\sum_{i=1}^{m} \lambda_{i},
$$

Thus, using Weil's Theorem,

$$
\sum_{i, j=1}^{m} t_{i j} \geq \sum_{i=1}^{m}\left|\lambda_{i}\right| \geq 2 m-2 k
$$

## Proof

Thus, since $T=\Lambda-I$, we observe $\sum_{i, j} \lambda_{i j} \geq 3 m-2 k$.

## Proof

Thus, since $T=\Lambda-I$, we observe $\sum_{i, j} \lambda_{i j} \geq 3 m-2 k$.
Now assume $m \geq 2 k$. Let $2 k \leq \ell \leq m$ and $\sigma \subset\{1,2, \ldots, m\}$ be of cardinality $\ell$, and

$$
\bar{\Lambda}=\left\{\lambda_{i j}\right\}_{i, j \in \sigma}
$$

## Proof

Thus, since $T=\Lambda-I$, we observe $\sum_{i, j} \lambda_{i j} \geq 3 m-2 k$.
Now assume $m \geq 2 k$. Let $2 k \leq \ell \leq m$ and $\sigma \subset\{1,2, \ldots, m\}$ be of cardinality $\ell$, and

$$
\bar{\Lambda}=\left\{\lambda_{i j}\right\}_{i, j \in \sigma} .
$$

Clearly, rank $\bar{\Lambda} \leq k$, so, by the first part,

$$
\sum_{i, j \in \sigma} \lambda_{i j} \geq 3 \ell-2 k
$$

## Proof

Thus, since $T=\Lambda-I$, we observe $\sum_{i, j} \lambda_{i j} \geq 3 m-2 k$.
Now assume $m \geq 2 k$. Let $2 k \leq \ell \leq m$ and $\sigma \subset\{1,2, \ldots, m\}$ be of cardinality $\ell$, and

$$
\bar{\Lambda}=\left\{\lambda_{i j}\right\}_{i, j \in \sigma}
$$

Clearly, rank $\bar{\Lambda} \leq k$, so, by the first part,

$$
\sum_{i, j \in \sigma} \lambda_{i j} \geq 3 \ell-2 k
$$

Using averaging argument, we obtain

$$
\begin{aligned}
& \quad \sum_{\substack{i, j=1}}^{m} \lambda_{i j}=m+\sum_{\substack{i, j=1 \\
i \neq j}}^{m} \lambda_{i j}=m+\binom{m-2}{l-2}^{-1} \sum_{\substack{\sigma \subset\{1,2, \ldots, m\} \\
|\sigma|=\ell}} \sum_{\substack{i, j \in \sigma \\
i \neq j}} \lambda_{i j} \\
& \geq m+\binom{m-2}{l-2}^{-1}\binom{m}{l}(2 l-2 k)=m+2 \frac{m(m-1)}{\ell(\ell-1)}(\ell-k) .
\end{aligned}
$$

## Proof

Thus, since $T=\Lambda-I$, we observe $\sum_{i, j} \lambda_{i j} \geq 3 m-2 k$.
Now assume $m \geq 2 k$. Let $2 k \leq \ell \leq m$ and $\sigma \subset\{1,2, \ldots, m\}$ be of cardinality $\ell$, and

$$
\bar{\Lambda}=\left\{\lambda_{i j}\right\}_{i, j \in \sigma}
$$

Clearly, $\operatorname{rank} \bar{\Lambda} \leq k$, so, by the first part,

$$
\sum_{i, j \in \sigma} \lambda_{i j} \geq 3 \ell-2 k
$$

Using averaging argument, we obtain

$$
\begin{aligned}
& \sum_{\substack{i, j=1}}^{m} \lambda_{i j}=m+\sum_{\substack{i, j=1 \\
i \neq j}}^{m} \lambda_{i j}=m+\binom{m-2}{l-2}^{-1} \sum_{\substack{\sigma \subset\{1,2, \ldots, \ldots m\} \\
|\sigma|=\ell}} \sum_{\substack{i, j \in \sigma \\
i \neq j}} \lambda_{i j} \\
& \geq m+\binom{m-2}{l-2}^{-1}\binom{m}{l}(2 l-2 k)=m+2 \frac{m(m-1)}{\ell(\ell-1)}(\ell-k) .
\end{aligned}
$$

The choice $\ell=2 k$ completes the proof.

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?
Recall an observation of Lassak: for every $d$-dimensional convex body $K$ there exists a simplex $L \subset K$ (maximal volume simplex works) such that $K \subset(d+2) L$.

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?
Recall an observation of Lassak: for every $d$-dimensional convex body $K$ there exists a simplex $L \subset K$ (maximal volume simplex works) such that $K \subset(d+2) L$. Therefore, the trivial bound via $d$-dimensional simplex gives

$$
\operatorname{vein}(K) \leq(d+1)(d+2)=d^{2}+3 d+2
$$

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?
Recall an observation of Lassak: for every $d$-dimensional convex body $K$ there exists a simplex $L \subset K$ (maximal volume simplex works) such that $K \subset(d+2) L$. Therefore, the trivial bound via $d$-dimensional simplex gives

$$
\operatorname{vein}(K) \leq(d+1)(d+2)=d^{2}+3 d+2
$$

(to be compared with vein $(K) \leq 24 d^{3 / 2}$ in the symmetric case).

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?
Recall an observation of Lassak: for every $d$-dimensional convex body $K$ there exists a simplex $L \subset K$ (maximal volume simplex works) such that $K \subset(d+2) L$. Therefore, the trivial bound via $d$-dimensional simplex gives

$$
\operatorname{vein}(K) \leq(d+1)(d+2)=d^{2}+3 d+2
$$

(to be compared with vein $(K) \leq 24 d^{3 / 2}$ in the symmetric case).
The approach via John decomposition would give the upper bound $C d^{2}$ with $C>1$.

## The non-symmetric case

Vertex index can be defined similarly (minimizing over all choices of the center):

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{m}\left\|p_{i}\right\|_{K-a} \mid a \in K, K-a \subset \operatorname{conv}\left\{p_{i}\right\}_{i \leq m}\right\} .
$$

Problem. What is the best possible upper bound on vein $(K)$ ?
Recall an observation of Lassak: for every $d$-dimensional convex body $K$ there exists a simplex $L \subset K$ (maximal volume simplex works) such that $K \subset(d+2) L$. Therefore, the trivial bound via $d$-dimensional simplex gives

$$
\operatorname{vein}(K) \leq(d+1)(d+2)=d^{2}+3 d+2
$$

(to be compared with vein $(K) \leq 24 d^{3 / 2}$ in the symmetric case).
The approach via John decomposition would give the upper bound $C d^{2}$ with $C>1$.
This problem is closely related to approximation of convex bodies by polytopes (with small amount of verteces) in terms of Banach-Mazur distance.

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$.

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
\lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
\lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that Barvinok's bound is optimal up to a logarithmic factor.

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
c \sqrt{\frac{d}{\ln \frac{2 N \ln 2 N}{d}}} \leq \lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that Barvinok's bound is optimal up to a logarithmic factor.

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
c \sqrt{\frac{d}{\ln \frac{2 N \ln 2 N}{d}}} \leq \lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that Barvinok's bound is optimal up to a logarithmic factor.
S.Szarek (2014) proved $\lambda(d, N) \leq \frac{C d}{\ln (2 N / d)}$ in the non-symmetric case.

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
c \sqrt{\frac{d}{\ln \frac{2 N \ln 2 N}{d}}} \leq \lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that Barvinok's bound is optimal up to a logarithmic factor.
S.Szarek (2014) proved $\lambda(d, N) \leq \frac{C d}{\ln (2 N / d)}$ in the non-symmetric case.

Question. What is $N$ for $\lambda \leq d^{1-\varepsilon}$ ?

## Approximation of convex bodies by polytopes

Problem. Find the best possible $\lambda=\lambda(d, N)$ such that for every $d$-dimensional convex body $K$ there exists a polytope $P \subset K$ with $N$ vertices satisfying

$$
P \subset \lambda K .
$$

In the symmetric case $\lambda(d, 8 d) \leq 3 \sqrt{d}$. Moreover, Barvinok (2012) proved that for $d \geq 2 \ln 2 N$,

$$
c \sqrt{\frac{d}{\ln \frac{2 N \ln 2 N}{d}}} \leq \lambda(d, N) \leq C \sqrt{\frac{d}{\ln 2 N} \cdot \ln \frac{d}{\ln 2 N}} .
$$

L.-Rudelson-Tomczak-Jaegermann (2014) constructed an example showing that Barvinok's bound is optimal up to a logarithmic factor.
S.Szarek (2014) proved $\lambda(d, N) \leq \frac{C d}{\ln (2 N / d)}$ in the non-symmetric case.

Question. What is $N$ for $\lambda \leq d^{1-\varepsilon}$ ? We conjecture that $N=C d$ is enough.

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.
Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$.

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.
Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$.

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.
Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$. Define the operator $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ by $T e_{i}=x_{i}$. Then $\mathrm{rk} T=d, a=\sum_{i=1}^{N}\left|T e_{i}\right|$, and

$$
\forall x \in \mathbb{R}^{d} \quad|x| \leq\|x\|_{L^{0}}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle=\max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle .
$$

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.
Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$. Define the operator $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ by $T e_{i}=x_{i}$. Then $\mathrm{rk} T=d, a=\sum_{i=1}^{N}\left|T e_{i}\right|$, and

$$
\forall x \in \mathbb{R}^{d} \quad|x| \leq\|x\|_{L^{0}}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle=\max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle .
$$

For $i \leq N$ denote

$$
\lambda_{i}=\sqrt{\left|T e_{i}\right| / a} \quad \text { and } \quad v_{i}=\frac{T e_{i}}{a \lambda_{i}} .
$$

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.
Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$.
Define the operator $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ by $T e_{i}=x_{i}$. Then $\mathrm{rk} T=d, a=\sum_{i=1}^{N}\left|T e_{i}\right|$, and

$$
\forall x \in \mathbb{R}^{d} \quad|x| \leq\|x\|_{L^{0}}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle=\max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle .
$$

For $i \leq N$ denote

$$
\lambda_{i}=\sqrt{\left|T e_{i}\right| / a} \quad \text { and } \quad v_{i}=\frac{T e_{i}}{a \lambda_{i}} .
$$

Then

$$
\sum_{i=1}^{d} \lambda_{i}^{2}=1 \quad \text { and } \quad \sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.

Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$.
Define the operator $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ by $T e_{i}=x_{i}$. Then $\mathrm{rk} T=d$, $a=\sum_{i=1}^{N}\left|T e_{i}\right|$, and

$$
\forall x \in \mathbb{R}^{d} \quad|x| \leq\|x\|_{L^{0}}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle=\max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle
$$

For $i \leq N$ denote

$$
\lambda_{i}=\sqrt{\left|T e_{i}\right| / a} \quad \text { and } \quad v_{i}=\frac{T e_{i}}{a \lambda_{i}}
$$

Then

$$
\sum_{i=1}^{d} \lambda_{i}^{2}=1 \quad \text { and } \quad \sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

We also observe that $T^{*}$ can be presented as $T^{*}=a \Lambda S$, where $\Lambda$ is the diagonal matrix with $\lambda_{i}$ 's on the diagonal and $S=\sum_{i=1}^{N} v_{i} \otimes e_{i}$ (recall $(X \otimes Y)(z)=\langle X, z\rangle Y$, or $\left.X \otimes Y=\left\{Y_{i} X_{j}\right\}\right)$.

## Lower bound for the Euclidean ball

The above proof gives vein $\left(B_{2}^{d}\right) \geq d^{3 / 2} / \sqrt{2 \pi e}$. Here we suggest another approach to the problem, which is of independent interest, and leads to the bound $d^{3 / 2} / \sqrt{3}$.

Proof. Assume that $B_{2}^{d} \subset L=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$, denote $a=\sum_{i=1}^{N}\left|x_{i}\right|$. Goal: $a^{2} \geq d^{3} / 3$.
Define the operator $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ by $T e_{i}=x_{i}$. Then $\mathrm{rk} T=d$, $a=\sum_{i=1}^{N}\left|T e_{i}\right|$, and

$$
\forall x \in \mathbb{R}^{d} \quad|x| \leq\|x\|_{L^{0}}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle=\max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle
$$

For $i \leq N$ denote

$$
\lambda_{i}=\sqrt{\left|T e_{i}\right| / a} \quad \text { and } \quad v_{i}=\frac{T e_{i}}{a \lambda_{i}} .
$$

Then

$$
\sum_{i=1}^{d} \lambda_{i}^{2}=1 \quad \text { and } \quad \sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

We also observe that $T^{*}$ can be presented as $T^{*}=a \Lambda S$, where $\Lambda$ is the diagonal matrix with $\lambda_{i}$ 's on the diagonal and $S=\sum_{i=1}^{N} v_{i} \otimes e_{i}$ (recall $(X \otimes Y)(z)=\langle X, z\rangle Y$, or $X \otimes Y=\left\{Y_{i} X_{j}\right\}$ ). Note that the rank of $S$ equals $d$.

## Lower bound for the Euclidean ball

Let $s_{1} \geq s_{2} \geq \ldots \geq s_{d}>0$ be the singular values of $S$ and let $\left\{w_{i}\right\}_{i \leq n},\left\{z_{i}\right\}_{i \leq d}$ be orthonormal systems such that $S=\sum_{i=1}^{d} s_{i} w_{i} \otimes z_{i}$.

## Lower bound for the Euclidean ball

Let $s_{1} \geq s_{2} \geq \ldots \geq s_{d}>0$ be the singular values of $S$ and let $\left\{w_{i}\right\}_{i \leq n},\left\{z_{i}\right\}_{i \leq d}$ be orthonormal systems such that $S=\sum_{i=1}^{d} s_{i} w_{i} \otimes z_{i}$. Then

$$
\sum_{i=1}^{d} s_{i}^{2}=\|S\|_{H S}^{2}=\sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

## Lower bound for the Euclidean ball

Let $s_{1} \geq s_{2} \geq \ldots \geq s_{d}>0$ be the singular values of $S$ and let $\left\{w_{i}\right\}_{i \leq n},\left\{z_{i}\right\}_{i \leq d}$ be orthonormal systems such that $S=\sum_{i=1}^{d} s_{i} w_{i} \otimes z_{i}$.
Then

$$
\sum_{i=1}^{d} s_{i}^{2}=\|S\|_{H S}^{2}=\sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

Now for $m \leq d$ denote $S_{m}=\sum_{i=m}^{d} s_{i} w_{i} \otimes z_{i}$ and consider the $(d+1-m)$-dimensional subspace $E_{m}=\operatorname{Im}\left(\Lambda S_{m}\right) \subset \operatorname{Im} T^{*}$.

## Lower bound for the Euclidean ball

Let $s_{1} \geq s_{2} \geq \ldots \geq s_{d}>0$ be the singular values of $S$ and let $\left\{w_{i}\right\}_{i \leq n},\left\{z_{i}\right\}_{i \leq d}$ be orthonormal systems such that $S=\sum_{i=1}^{d} s_{i} w_{i} \otimes z_{i}$.
Then

$$
\sum_{i=1}^{d} s_{i}^{2}=\|S\|_{H S}^{2}=\sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

Now for $m \leq d$ denote $S_{m}=\sum_{i=m}^{d} s_{i} w_{i} \otimes z_{i}$ and consider the $(d+1-m)$-dimensional subspace $E_{m}=\operatorname{Im}\left(\Lambda S_{m}\right) \subset \operatorname{Im} T^{*}$.
Considering the extreme points of the section of the cube $B_{\infty}^{N} \cap E_{m}$ we observe that there exists a vector $y=\left\{y_{i}\right\}_{i \leq N} \in B_{\infty}^{N} \cap E_{m}$ such that the set $A=\left\{i| | y_{i} \mid=1\right\}$ has cardinality at least $d+1-m$.

## Lower bound for the Euclidean ball

Let $s_{1} \geq s_{2} \geq \ldots \geq s_{d}>0$ be the singular values of $S$ and let $\left\{w_{i}\right\}_{i \leq n},\left\{z_{i}\right\}_{i \leq d}$ be orthonormal systems such that $S=\sum_{i=1}^{d} s_{i} w_{i} \otimes z_{i}$.
Then

$$
\sum_{i=1}^{d} s_{i}^{2}=\|S\|_{H S}^{2}=\sum_{i=1}^{d}\left|v_{i}\right|^{2}=1
$$

Now for $m \leq d$ denote $S_{m}=\sum_{i=m}^{d} s_{i} w_{i} \otimes z_{i}$ and consider the $(d+1-m)$-dimensional subspace $E_{m}=\operatorname{Im}\left(\Lambda S_{m}\right) \subset \operatorname{Im} T^{*}$.
Considering the extreme points of the section of the cube $B_{\infty}^{N} \cap E_{m}$ we observe that there exists a vector $y=\left\{y_{i}\right\}_{i \leq N} \in B_{\infty}^{N} \cap E_{m}$ such that the set $A=\left\{i| | y_{i} \mid=1\right\}$ has cardinality at least $d+1-m$.
WLOG we assume that $|A|=d+1-m$ (otherwise pass to a subset of $A$ ). Then
$\left|(a \Lambda)^{-1} y\right|=\frac{1}{a} \sqrt{\sum_{i=1}^{N} \frac{y_{i}^{2}}{\lambda_{i}^{2}}} \geq \frac{1}{a} \sqrt{\sum_{i \in A} \frac{1}{\lambda_{i}^{2}}} \geq \frac{d+1-m}{a \sqrt{\sum_{i \in A} \lambda_{i}^{2}}} \geq \frac{d+1-m}{a \sqrt{\sum_{i=1}^{N} \lambda_{i}^{2}}}=\frac{d+1-m}{a}$.

## Lower bound for the Euclidean ball

Note that by construction $y \in E_{m} \subset \operatorname{Im} T^{*}$, so denoting the inverse of $T^{*}$ from the image by $\left(T^{*}\right)^{-1}$ we have

$$
\left|\left(T^{*}\right)^{-1} y\right|=\left|S^{-1}(a \Lambda)^{-1} y\right|=\left|S_{m}^{-1}(a \Lambda)^{-1} y\right| \geq \frac{\left|(a \Lambda)^{-1} y\right|}{\left\|S_{m}\right\|} \geq \frac{d+1-m}{a s_{m}} .
$$

## Lower bound for the Euclidean ball

Note that by construction $y \in E_{m} \subset \operatorname{Im} T^{*}$, so denoting the inverse of $T^{*}$ from the image by $\left(T^{*}\right)^{-1}$ we have

$$
\left|\left(T^{*}\right)^{-1} y\right|=\left|S^{-1}(a \Lambda)^{-1} y\right|=\left|S_{m}^{-1}(a \Lambda)^{-1} y\right| \geq \frac{\left|(a \Lambda)^{-1} y\right|}{\left\|S_{m}\right\|} \geq \frac{d+1-m}{a s_{m}} .
$$

Since $|x| \leq \max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle$,

$$
\frac{d+1-m}{a s_{m}} \leq\left|\left(T^{*}\right)^{-1} y\right| \leq \max _{i \leq N}\left\langle T^{*}\left(T^{*}\right)^{-1} y, e_{i}\right\rangle=\|y\|_{\infty}=1 .
$$

## Lower bound for the Euclidean ball

Note that by construction $y \in E_{m} \subset \operatorname{Im} T^{*}$, so denoting the inverse of $T^{*}$ from the image by $\left(T^{*}\right)^{-1}$ we have

$$
\left|\left(T^{*}\right)^{-1} y\right|=\left|S^{-1}(a \Lambda)^{-1} y\right|=\left|S_{m}^{-1}(a \Lambda)^{-1} y\right| \geq \frac{\left|(a \Lambda)^{-1} y\right|}{\left\|S_{m}\right\|} \geq \frac{d+1-m}{a s_{m}}
$$

Since $|x| \leq \max _{i \leq N}\left\langle T^{*} x, e_{i}\right\rangle$,

$$
\frac{d+1-m}{a s_{m}} \leq\left|\left(T^{*}\right)^{-1} y\right| \leq \max _{i \leq N}\left\langle T^{*}\left(T^{*}\right)^{-1} y, e_{i}\right\rangle=\|y\|_{\infty}=1
$$

This shows $s_{m} \geq(d+1-m) / a$ and implies

$$
\frac{d^{3}}{3 a^{2}} \leq \frac{1}{a^{2}} \sum_{m=1}^{d}(d+1-m)^{2} \leq \sum_{m=1}^{d} s_{m}^{2}=1
$$

which proves the desired result.

