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Polyhedra

Definition 1.1
A polyhedron P is a closed, connected, orientable surface
embedded in E3 which is tiled by finitely many plane simple
polygons in a face-to-face manner. The polygons are called faces
of P, their vertices and edges are called the vertices and edges of
P, respectively.

Note: Coplanar and non-convex faces are allowed.
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Polyhedra, Polyhedral Maps, and Symmetry

A polyhedron P is the image of a polyhedral map M on a surface
under a polyhedral embedding f : M → E3. We call M the
underlying polyhedral map of P. P is a polyhedral realization of M.

geometric symmetry group of a polyhedron: G (P) ⊂ O(3)
automorphism group of its underlying map M: Γ(M)
G (P) is isomorphic to a subgroup of Γ(M).

Definition 1.2
P is (geometrically) vertex-transitive if G acts transitively on the
vertices of P.

Can we find all combinatorial types of geometrically
vertex-transitive polyhedra (of higher genus g ≥ 2)?
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Vertex-Transitive Polyhedra of Higher Genus

• Grünbaum and Shephard (GS, 1984): vertex-transitive
polyhedra of positive genus exist

• genus 1: two infinite two-parameter families based on prisms
and antiprisms

• genus 3, 5, 7, 11, 19: five examples, based on snub versions of
Platonic solids

• the combinatorially regular Grünbaum polyhedron (Grünbaum
(1999), Brehm, Wills) of genus 5

• most recent survey and a seventh example (of g = 11): Gévay,
Schulte, Wills 2014 (GSW)

related concept: uniformity (vertex-transitivity with regular faces)
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Vertex-Transitive Polyhedra – Examples of genus 11

image source: Gévay, Schulte, Wills, The regular Grünbaum
polyhedron of genus 5, Adv. Geom. 14(3) , 2014
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A Vertex-Transitive Polyhedron of Genus 7 With
Octahedral Symmetry

integer coordinates for the initial vertex: v = (10,−4, 11)
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Example: Genus 5 with Octahedral Symmetry

image source: GSW
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The Combinatorially Regular Grünbaum Polyhedron

edge flips produce the Grünbaum polyhedron:

image source: GSW
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Properties of Vertex-Transitive Polyhedra

• GS: All vertices lie on a sphere, and faces are convex polygons.

• GSW: The symmetry groups of vertex-transitive polyhedra for
g ≥ 2 are the rotation groups of the Platonic solids. There are
finitely many such polyhedra in total (not just in each genus).

• Tucker (2014): The genus of an embedded (smooth) surface
limits the possible geometric symmetries.

• tetrahedral symmetry: g ∈ L(6, 8) + {0, 3, 5, 7}
• octahedral symmetry: g ∈ L(12, 16, 18) + {0, 5, 7, 11, 13}
• icosahedral symmetry:

g ∈ L(30, 40, 48) + {0, 11, 19, 21, 29, 31, 37}
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More Results

Note: For the rest of this talk, we assume higher genus in the
range g ≥ 2.

Theorem 1.1
(L.) The geometric symmetry group G (P) of a vertex-transitive
polyhedron of genus g ≥ 2 acts simply transitively on the vertices
of P.

Theorem 1.2
(L.) There is only one combinatorial type of vertex-transitive
polyhedron with g ≥ 2 and tetrahedral symmetry. It has genus 3,
is of type {3, 8}, and its convex hull is a snub tetrahedron.
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The Vertex-Transitive Polyhedron of Genus 3 With
Tetrahedral Symmetry

integer coordinates for the initial vertex: v = (6, 1, 2)
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Maximal Triangulation

face with trivial stabilizer face with non-trivial stabilizer (type 2)
(type 1) example example: stabilized by

order 4 rotation

4

If a maximally triangulated map is not symmetrically realizable,
then no map derived from it by making faces coplanar is.
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Encoding Symmetry into the Underlying Maps

The darts (directed edges) can be labeled by uniquely determined
group elements.

v = (w)g−1 w = (v)g

g

g−1

Not all group elements may appear. Labels are core rotations
(rotations by the smallest nontrivial angle around an axis) for the
Platonic rotation group G .

4
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Decomposition of the Neighborhood of an Initial Vertex v

face orbit of type 2 (non-trivial stabilizer): single regular polygons

v

g

g

g

g
4

We call (g) the orbit symbol for an orbit of type 2. It encodes the
angle (g , g).
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Decomposition of the Neighborhood of an Initial Vertex v

face orbit of type 1 (with trivial stabilizer): triple of triangles

hh−1g−1

g

g

h

g−1h−1

g−1h−1

hgh−1

g−1hg

h

g

gh 6= 1

g 6= 1, h 6= 1

v

F

F ′′ = Fh−1

F ′ = Fg

We call (g , h, g−1h−1) the orbit symbol for an orbit of type 1. It
encodes angles (g , h), (h, g−1h−1), (g−1h−1, g).
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Candidate Maps

The underlying maps, when oriented, can be encoded succinctly by
a list of face orbit symbols.

• reason: need information only at a designated initial vertex

• conversely, lists of orbit symbols are called candidate map if
certain necessary conditions are met

• relation to branched coverings of surfaces, voltage graph
constructions

• possible face orbit symbols can be determined geometrically
by pole figures
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First Approach

... enumerate candidate maps fulfilling the genus restrictions up to
geometric isomorphism, then look for obstructions to symmetric
realizability (as a geometric polyhedron with the encoded
vertex-transitive symmetry).

tetrahedral symmetry: 3 suitable candidate maps of genus g ≥ 2

octahedral symmetry: 860 suitable candidate maps of genus g ≥ 2

icosahedral symmetry: ? suitable candidate maps
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Octahedral Symmetry

There are precisely six maps of genus 5, and four maps of genus 7
in the list for octahedral symmetry; these are all the maps of small
positive (g ≤ 10) genus.

Theorem 2.1
(L.) In the genus range 0 < g ≤ 10, there are precisely three
maximally triangulated, vertex-transitive polyhedra with octahedral
symmetry. Two are of genus 5 (the Grünbaum polyhedron and its
relative), and one is of genus 7.

Note that coplanarity of faces is impossible for the existing
polyhedra.
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Why is Symmetric Realizability a Hard Problem?
Symmetric Realizability Problem:

• difficult problem, in principle decidable
• theory of oriented matroids can simplify testing of necessary

conditions

At a hands-on geometric level, you find that:
• for most of the face orbits, you can find a non-selfintersecting

realization
• there are too many maps to consider
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A Second Approach

Let S be the surface supporting P and consider p : S → S/G . The
only points at which p is not an ordinary covering projection are
called branch points. Around these points, p looks like the
complex exponential function z 7→ zn.

face structure → cell structure of the quotient
face orbits of type 2 → branch points of higher order
orbit of edges fixed by half-turns → semi-edges with branch

points of order 2

The Euler characteristics of S and S/G are related by the
Riemann-Hurwitz equation.
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Orbifolds of E 3

Consider the quotient map q : E 3 → E 3/G . On each concentric
sphere Sr = S(o, r) in E 3 the map q is a regular branched covering
of a spherical quotient.

The set X of rotation axes gets taken to a set Y of rays in E 3/G
(made up of the branch points on the quotients of the concentric
spheres).

It is possible to recover the original space E 3 by a voltage graph
construction: assign generators u, v of G to generators a, b of
π(E 3/G − Y ) for some fixed base point.
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Orbifolds of E 3

G a group of rotations, Y ⊂ E 3/G consists of:

• a 2-fold and two 3-fold rays from the origin for tetrahedral
symmetry (A4)

• a 2-fold, a 3-fold, and a 4-fold ray from the origin for cubical
symmetry (S4)

• a 2-fold, a 3-fold, and a 5-fold ray from the origin for
icosahedral symmetry (A5)
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The Quotient Surface is Embedded in E 3/G

Let f : M → P ⊂ E 3 be a symmetric polyhedral embedding of a
map M into E 3 and consider p : M → M/G = Mq.
Let B = g−1(Y ). There is an embedding g : Mq → E 3/G
completing the commutative diagram:

(M, p−1[B])
f−−−−→ (E 3,X )yp

yq

(Mq,B)
g−−−−→ (E 3/G ,Y )
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Edges in the Quotient

a

b

24 / 26



Introduction Maps and Encoded Symmetry Quotients

Faces of Type 1 in the Quotient

• there are only 21 possible words (and their inverses) in 〈a, b〉
to which an edge / semiedge could be sent

• there can be at most 13 kinds of edges in a map

• for a face orbit of type 1, elements associated to boundary
walk need to multiply to the identity (no axis pierces a
triangle)

Theorem
(L.) There are less than 70 vertex-transitive polyhedra of higher
genus for octahedral symmetry. The genera are in
{5, 7, 12, 13, 17, 19, 24}.
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Thank you!

Questions?
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