Maximality properties of rational lattice-free polyhedra

Jan Krümpelmann Otto-von-Guericke Universität Magdeburg

Joint work with Gennadiy Averkov and Stefan Weltge

GeoSym, Veszprém 2015

Lattice-free convex sets

Background and Result	Proof idea	Rational polyhedra
00000		

A convex set $C \subseteq \mathbb{R}^d$ is *lattice-free* if $int(C) \cap \mathbb{Z}^d = \emptyset$.

Background and Result	Proof idea	Rational polyhe
00000		

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Background and Result	Proof idea	Rati
0000		

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

onal polyhedra

Background and Result	Proof idea	
00000	00000	

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (LovÁsz (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

C is a polyhedron with at most 2^d facets,

Rational polyhedra

Background and Result	Proof idea	
00000		

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded:

Rational polyhedra

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- ▶ if C is unbounded: there exists a bounded convex set $C' \subseteq \mathbb{R}^k$ which is \mathbb{R}^k -maximal \mathbb{Z}^k -free (where $1 \le k \le d 1$)

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal Z^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal ℤ^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},

• relint(F) $\cap \mathbb{Z}^d \neq \emptyset$ for every facet F of C

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal ℤ^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},
- ▶ relint(F) $\cap \mathbb{Z}^d \neq \emptyset$ for every facet F of C (we say F is blocked).

Background and Result	Proof ide
0000	

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal ℤ^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},
- ▶ relint(F) $\cap \mathbb{Z}^d \neq \emptyset$ for every facet F of C (we say F is blocked).
- ≥ means unimodularly equivalent:

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal ℤ^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},
- relint(F) $\cap \mathbb{Z}^d \neq \emptyset$ for every facet F of C (we say F is blocked).

 \simeq means unimodularly equivalent: for $X, Y \subseteq \mathbb{R}^d$ we write $X \simeq Y$ if there exists an affine map ϕ with $\phi(\mathbb{Z}^d) = \mathbb{Z}^d$ and $\phi(X) = Y$.

A lattice-free convex set $C \subseteq \mathbb{R}^d$ is \mathbb{R}^d -maximal if for every $r \in \mathbb{R}^d \setminus C$, conv $(C \cup \{r\})$ is not lattice-free.

Theorem (Lovász (1989))

Let $C \subseteq \mathbb{R}^d$ be an \mathbb{R}^d -maximal lattice-free convex set. Then

- C is a polyhedron with at most 2^d facets,
- if C is unbounded: there exists a bounded convex set C' ⊆ ℝ^k which is ℝ^k-maximal ℤ^k-free (where 1 ≤ k ≤ d − 1) such that C ≃ C' × ℝ^{d-k},
- relint(F) $\cap \mathbb{Z}^d \neq \emptyset$ for every facet F of C (we say F is blocked).

 \simeq means unimodularly equivalent: for $X, Y \subseteq \mathbb{R}^d$ we write $X \simeq Y$ if there exists an affine map ϕ with $\phi(\mathbb{Z}^d) = \mathbb{Z}^d$ and $\phi(X) = Y$.

(Maximal) lattice-free convex sets have applications in (mixed-integer) optimization and algebraic geometry.

d-maximality	Background and Result ○●○○○	Proof idea	Rational polyhedra O

7

\mathbb{Z}^d -maximality

(Possible) Solution (motivated by applications in mixed-integer optimization): consider *integral* polyhedra instead of arbitrary convex sets.

\mathbb{Z}^d	-maxima	litv
11-10	maxima	icy

(Possible) Solution (motivated by applications in mixed-integer optimization): consider *integral* polyhedra instead of arbitrary convex sets.

A polyhedron $P \subseteq \mathbb{R}^d$ is integral if $P = \operatorname{conv}(P \cap \mathbb{Z}^d)$. $\mathcal{P}(\mathbb{Z}^d)$ is the set of all *d*-dimensional integral polyhedra.

```
\mathbb{Z}^d-maximality
```

(Possible) Solution (motivated by applications in mixed-integer optimization): consider *integral* polyhedra instead of arbitrary convex sets.

A polyhedron $P \subseteq R^d$ is integral if $P = \operatorname{conv}(P \cap \mathbb{Z}^d)$. $\mathcal{P}(\mathbb{Z}^d)$ is the set of all *d*-dimensional integral polyhedra.

What is the appropriate "translation" of \mathbb{R}^d -maximality?

(Possible) Solution (motivated by applications in mixed-integer optimization): consider *integral* polyhedra instead of arbitrary convex sets.

A polyhedron $P \subseteq \mathbb{R}^d$ is integral if $P = \operatorname{conv}(P \cap \mathbb{Z}^d)$. $\mathcal{P}(\mathbb{Z}^d)$ is the set of all *d*-dimensional integral polyhedra.

What is the appropriate "translation" of \mathbb{R}^d -maximality? A lattice-free convex set *C* is \mathbb{Z}^d -maximal if for every $z \in \mathbb{Z}^d \setminus C$, $\operatorname{conv}(C \cup \{z\})$ is not lattice-free.

\mathbb{Z}^d -maximality(cont.)	Background and Result ○○●○○	Proof idea	Rational polyhedra O

Z ^d -maxima	lity(cont.)
-------------------------------	-------------

Theorem (AVERKOV & WAGNER & WEISMANTEL (2011), NILL & ZIEGLER (2011))

\mathbb{Z}^d -maximality(con	t.)
--------------------------------	-----

Theorem (Averkov & Wagner & Weismantel (2011), Nill & Ziegler (2011))

Every lattice-free P ∈ P(Z^d) is contained in some Z^d-maximal lattice-free L ∈ P(Z^d).

ℤ ^d -maximal	ity(cont.)
-------------------------	------------

Theorem (AVERKOV & WAGNER & WEISMANTEL (2011), NILL & ZIEGLER (2011))

- Every lattice-free P ∈ P(Z^d) is contained in some Z^d-maximal lattice-free L ∈ P(Z^d).
- ▶ If $L \in \mathcal{P}(\mathbb{Z}^d)$ is \mathbb{Z}^d -maximal lattice-free and unbounded: there exists a \mathbb{Z}^k -maximal \mathbb{Z}^k -free polytope $L' \in \mathcal{P}(\mathbb{Z}^k)$ (where $1 \le k \le d-1$)

ℤ ^d -maximal	ity(cont.)
-------------------------	------------

Theorem (AVERKOV & WAGNER & WEISMANTEL (2011), NILL & ZIEGLER (2011))

- Every lattice-free P ∈ P(Z^d) is contained in some Z^d-maximal lattice-free L ∈ P(Z^d).
- If L ∈ P(Z^d) is Z^d-maximal lattice-free and unbounded: there exists a Z^k-maximal Z^k-free polytope L' ∈ P(Z^k) (where 1 ≤ k ≤ d − 1) such that L ≃ L' × R^k.

Theorem (Averkov & Wagner & Weismantel (2011), Nill & Ziegler (2011))

- Every lattice-free P ∈ P(Z^d) is contained in some Z^d-maximal lattice-free L ∈ P(Z^d).
- If L ∈ P(Z^d) is Z^d-maximal lattice-free and unbounded: there exists a Z^k-maximal Z^k-free polytope L' ∈ P(Z^k) (where 1 ≤ k ≤ d − 1) such that L ≃ L' × ℝ^k.
- ► For fixed d: only finitely many Z^d-maximal lattice-free elements of P(Z^d) up to unimodular equivalence.

Background and Result	Proof idea	Rational polyhe
00000		
00000	00000	

Obvious:

Background	and	Result	
00000			

 Background and Result
 Proof idea

 ○○○○○
 ○○○○○

Background and Result

Background and Result ○○○●○

 \mathbb{Z}^d -maximality vs. \mathbb{R}^d -maximality(cont.) Background and Result occord occor

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality).

Rational polyhedra

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

Background and Result

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

For $d \in \{1, 2\}$, yes (easy).

Background and Result

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

\mathbb{Z}^d -maximality vs. \mathbb{R}^d -maximality(cont.)

Background and Result

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

For $d \in \{1, 2\}$, yes (easy). For $d \ge 4$, no (NILL & ZIEGLER (2011)).

\mathbb{Z}^d -maximality vs. \mathbb{R}^d -maximality(cont.)

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

For $d \in \{1, 2\}$, yes (easy). For $d \ge 4$, no (NILL & ZIEGLER (2011)). For d = 3: open.

\mathbb{Z}^d -maximality vs. \mathbb{R}^d -maximality(cont.)

Background and Result

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

For $d \in \{1, 2\}$, yes (easy). For $d \ge 4$, no (NILL & ZIEGLER (2011)). For d = 3: open.

Full classification of \mathbb{R}^3 -maximal polyhedra in $\mathcal{P}(\mathbb{Z}^3)$ by AVERKOV & WAGNER & WEISMANTEL (2011).

In general: no "easy" characterization of \mathbb{Z}^d -maximality available (unlike blocked facets for \mathbb{R}^d -maximality). Can we still use this criterion in at least some cases?

Question: For which values of d are \mathbb{R}^d -maximality and \mathbb{Z}^d -maximality equivalent for polyhedra in $\mathcal{P}(\mathbb{Z}^d)$?

For $d \in \{1, 2\}$, yes (easy). For $d \ge 4$, no (NILL & ZIEGLER (2011)). For d = 3: open.

Full classification of \mathbb{R}^3 -maximal polyhedra in $\mathcal{P}(\mathbb{Z}^3)$ by AVERKOV & WAGNER & WEISMANTEL (2011).

Theorem (AVERKOV & K. & WELTGE (2015+))

Let $P \in \mathcal{P}(\mathbb{Z}^3)$ be lattice-free. Then P is \mathbb{Z}^3 -maximal if and only if P is \mathbb{R}^3 -maximal.

		-	2	Background and Result	
Z³- maximal	polytopes	in J	$\mathcal{P}(\mathbb{Z}^3)$	00000	

Proof idea ●○○○○ Rational polyhedra

Proof idea ●○○○○ Rational polyhedra

\mathbb{Z}^3 -maximal	polytopes	in	$\mathcal{P}($	(\mathbb{Z}^3))
-------------------------	-----------	----	----------------	------------------	---

Proof idea ●○○○○ Rational polyhedra

\mathbb{Z}^3 -maximal	polytopes	in	$\mathcal{P}($	\mathbb{Z}^3))
-------------------------	-----------	----	----------------	------------------	---

Proof idea ●○○○○ Rational polyhedra

\mathbb{Z}^3 -maximal polytopes in $\mathcal{P}(\mathbb{Z}^3)$

Background and Result

Proof idea ●○○○○ Rational polyhedra

<mark>ℤ³-</mark> maximal	polytopes	in $\mathcal{P}(Z)$	Z ³)
-------------------------------------	-----------	---------------------	------------------

Proof idea ●○○○○ Rational polyhedra

			- (-2)	Background and Result	Proo
Z³- maximal	polytopes	in	$\mathcal{P}(\mathbb{Z}^3)$	00000	000

of idea

Rational polyhedra

-2		- (-2)	Background and Result	Proof idea	Rational polyhe
Z ³ -maximal	polytopes i	n $\mathcal{P}(\mathbb{Z}^{2})$	00000	00000	
	1 5 1				

<mark>ℤ³-</mark> maximal	polytopes	in \mathcal{P}	$\mathcal{P}(\mathbb{Z}^3)$	
-------------------------------------	-----------	------------------	-----------------------------	--

Proof idea ●○○○○ Rational polyhedra

_2			- (-2)	Background and Result	Proof in
Z³- maximal	polytopes	in	$\mathcal{P}(\mathbb{Z}^3)$	00000	0000

There are the following twelve \mathbb{Z}^3 -maximal lattice-free polytopes in $\mathcal{P}(\mathbb{Z}^3)$

Rational polyhedra

i iooi iaca	Pro	of	idea
-------------	-----	----	------

Background and Result	Proof idea	Rational polyhe
00000	0000	

Sufficient to consider polytopes:

Proof idea	Background and Result	Proof idea ○●○○○	Rational polyhedra O

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1]\times \mathbb{R}^2$ and conv $\left((0,0),(0,2),(2,0)\right)\times \mathbb{R}$,

Proof idea	Background and Result	Proof idea ○●○○○	Rational polyhedra O

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1]\times \mathbb{R}^2$ and conv $\left((0,0),(0,2),(2,0)\right)\times \mathbb{R}$, which are \mathbb{R}^3 -maximal.

Proof idea	Background and Result	Proof idea ○●○○○	Rational polyhedra O

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1] \times \mathbb{R}^2$ and conv $((0,0), (0,2), (2,0)) \times \mathbb{R}$, which are \mathbb{R}^3 -maximal.

We distinguish lattice-free polytopes in $\mathcal{P}(\mathbb{Z}^3)$ by lattice width:

roof idea	Background and Result	Proof idea ○●○○○	Rational polyhedra O

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1] \times \mathbb{R}^2$ and conv $((0,0), (0,2), (2,0)) \times \mathbb{R}$, which are \mathbb{R}^3 -maximal.

We distinguish lattice-free polytopes in $\mathcal{P}(\mathbb{Z}^3)$ by lattice width: for a convex set C, the lattice width is

$$\mathsf{Iw}(C) := \min_{z \in \mathbb{Z}^d \setminus \{o\}} \left(\max_{x \in C} \langle z, x \rangle - \min_{y \in C} \langle z, y \rangle \right).$$

roof idea	Background and Result	Proof idea ○●○○○	Rational polyhedra O

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1]\times \mathbb{R}^2$ and conv $\left((0,0),(0,2),(2,0)\right)\times \mathbb{R}$, which are \mathbb{R}^3 -maximal.

We distinguish lattice-free polytopes in $\mathcal{P}(\mathbb{Z}^3)$ by lattice width: for a convex set C, the lattice width is

$$\mathsf{Iw}(C) := \min_{z \in \mathbb{Z}^d \setminus \{o\}} \left(\max_{x \in C} \langle z, x \rangle - \min_{y \in C} \langle z, y \rangle \right).$$

lattice width one: not possible

roof idea	Background and Result	Proof idea ○●○○○	

Sufficient to consider polytopes: unbounded \mathbb{Z}^3 -maximal polyhedra are $[0,1] \times \mathbb{R}^2$ and conv $((0,0), (0,2), (2,0)) \times \mathbb{R}$, which are \mathbb{R}^3 -maximal.

We distinguish lattice-free polytopes in $\mathcal{P}(\mathbb{Z}^3)$ by lattice width: for a convex set C, the lattice width is

$$\mathsf{Iw}(\mathcal{C}) := \min_{z \in \mathbb{Z}^d \setminus \{o\}} \left(\max_{x \in \mathcal{C}} \langle z, x \rangle - \min_{y \in \mathcal{C}} \langle z, y \rangle \right).$$

- lattice width one: not possible
- two cases: lattice width two or lattice width three or higher

Rational polyhedra

Proof idea(cont.)	Background and Result	Proof idea ○○●○○	Rational polyhedra O

Г

Proof	idea(cont.)	
-------	-------------	--

Background and Result	Proof idea	Rational polyhedra
00000	00000	

Characterize $P_0 := \{x \in \mathbb{R}^2 : (x, 0) \in P\}$:

Proof idea(cont.)	Background and Result	Proof idea ○○●○○	Rational polyhedra O	

Characterize $P_0 := \{x \in \mathbb{R}^2 : (x, 0) \in P\}$: P_0 is a polytope in $\mathcal{P}(\frac{1}{2}\mathbb{Z}^2)$ and it is \mathbb{Z}^2 -maximal lattice-free.

Proof idea(cont.)	Background and Result	Proof idea ○○●○○	Rational polyhedra O

Characterize $P_0 := \{x \in \mathbb{R}^2 : (x, 0) \in P\}$: P_0 is a polytope in $\mathcal{P}(\frac{1}{2}\mathbb{Z}^2)$ and it is \mathbb{Z}^2 -maximal lattice-free.

Enumerate possibilities for P_0 .

Proof idea(cont.)	Background and Result	Proof idea ○○●○○	Rational polyhedra O

Characterize $P_0 := \{x \in \mathbb{R}^2 : (x, 0) \in P\}$: P_0 is a polytope in $\mathcal{P}(\frac{1}{2}\mathbb{Z}^2)$ and it is \mathbb{Z}^2 -maximal lattice-free.

Enumerate possibilities for P_0 .

Construct *P* from P_0 .

Proof idea(cont.)	Background and Result	Proof idea ○○●○○	Rational polyhedra O

Characterize $P_0 := \{x \in \mathbb{R}^2 : (x, 0) \in P\}$: P_0 is a polytope in $\mathcal{P}(\frac{1}{2}\mathbb{Z}^2)$ and it is \mathbb{Z}^2 -maximal lattice-free.

Enumerate possibilities for P_0 .

Construct *P* from P_0 . Result: enumeration of all seven \mathbb{Z}^3 -maximal polytopes in $\mathcal{P}(\mathbb{Z}^3)$ with lattice width two; all of which are \mathbb{R}^3 -maximal.

\mathbb{Z}^2 -maximal polytopes in $\mathcal{P}(\frac{1}{2}\mathbb{Z}^2)$

Background	and	Result
00000		

Proof	idea(cont.)	
-------	-------------	--

Background and Result	Proof idea	Rational polyhed
00000	00000	

For lattice width three or higher:

Proof	idea(cont.)	
-------	-------------	--

Background and Result	Proof idea	Rational polyhedra	
	00000		

Proof idea(cont.)	
-------------------	--

Using tools from Geometry of Numbers:

Proof	idea(cont.)
-------	-------------

Using tools from Geometry of Numbers:

MINKOWSKI'S convex body theorems,

Proof idea(cont.)	Proof i	dea(cont.)
-------------------	---------	------	-------	---

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,

Proof idea(cont.)	
-------------------	--

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,
- KANNAN & LOVÁSZ'S inequalities on successive minima and covering minima,
| Proof idea(con | nt.) |
|----------------|------|
|----------------|------|

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,
- KANNAN & LOVÁSZ'S inequalities on successive minima and covering minima,
- flatness constant in dimension 2 (HURKENS)

Proof idea(cont.)	
-------------------	--

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,
- KANNAN & LOVÁSZ'S inequalities on successive minima and covering minima,
- flatness constant in dimension 2 (HURKENS)

we obtain bounds on volume and some other parameters.

Proof idea(con	nt.)
----------------	------

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,
- KANNAN & LOVÁSZ'S inequalities on successive minima and covering minima,
- flatness constant in dimension 2 (HURKENS)

we obtain bounds on volume and some other parameters.

We derive an algorithm to find all \mathbb{Z}^3 -maximal polytopes in $\mathcal{P}(\mathbb{Z}^3)$ with lattice width three or higher

Proof i	dea(cont.)
---------	-----------	---

Using tools from Geometry of Numbers:

- MINKOWSKI'S convex body theorems,
- BRUNN-MINKOWSKI inequality,
- KANNAN & LOVÁSZ'S inequalities on successive minima and covering minima,
- flatness constant in dimension 2 (HURKENS)

we obtain bounds on volume and some other parameters.

We derive an algorithm to find all \mathbb{Z}^3 -maximal polytopes in $\mathcal{P}(\mathbb{Z}^3)$ with lattice width three or higher and check them for \mathbb{R}^3 -maximality to complete the proof.

Theorem (AVERKOV & K. & WELTGE (2015+)) Let $d, s \in \mathbb{N}$ and let $P \in \mathcal{P}(\frac{1}{s}\mathbb{Z}^d)$ be lattice-free. Then if d = 1 or $d = 2, s \in \{1, 2\}$ or d = 3, s = 1, P is \mathbb{Z}^d -maximal if and only if P is \mathbb{R}^d -maximal.

Furthermore, for all other pairs d, s, this equivalence does not hold.

Thank you for your attention! Köszönöm!