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» if C is unbounded: there exists a bounded convex set C' C R* which is
R*-maximal 7" -free (where 1 < k < d — 1) such that C ~ C' x R?F,

> relint(F) N 729 +# () for every facet F of C (we say F is blocked).

~ means unimodularly equivalent: for X, Y C RY we write X ~ Y if there
exists an affine map ¢ with ¢(Z7) = 29 and ¢(X) = Y.

(Maximal) lattice-free convex sets have applications in (mixed-integer)
optimization and algebraic geometry.
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Problem: "too many” R?-maximal lattice-free convex sets — not practical for
applications.

(Possible) Solution (motivated by applications in mixed-integer optimization):
consider integral polyhedra instead of arbitrary convex sets.

A polyhedron P C R is integral if P = conv(P N 7Z%). P(Z?) is the set of all
d-dimensional integral polyhedra.

What is the appropriate " translation” of RY-maximality?

A lattice-free convex set C is Z-maximal if for every z € 77\ C, conv(CU{z})
is not lattice-free.
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7%-maximal integral polyhedra are indeed useful in mixed-integer optimization
(DEL P1a, WEISMANTEL (2012)).
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> If L c P(Z9) is 77-maximal lattice-free and unbounded: there exists a

7F-maximal 7" -free polytope L' € P(7Z") (where 1 < k < d — 1) such that
L~ L' xRk

> For fixed d: only finitely many 7Z°-maximal lattice-free elements of P(Z)
up to unimodular equivalence.
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Z9-maximality vs. R-maximality(cont. Qs 00000 o

In general: no "easy” characterization of Z“-maximality available (unlike
blocked facets for R?-maximality).
Can we still use this criterion in at least some cases?

Question: For which values of d are R?-maximality and Z“-maximality
equivalent for polyhedra in P(Z%)?

For d € {1,2}, yes (easy).
For d > 4, no (NILL & ZIEGLER (2011)).
For d = 3: open.

Full classification of R*-maximal polyhedra in P(7Z°) by AVERKOV & WAGNER
& WEISMANTEL (2011).

Theorem (AVERKOV & K. & WELTGE (2015+))

Let P ¢ P(Z°) be lattice-free. Then P is 7*>-maximal if and only if P is
R*-maximal.
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Sufficient to consider polytopes: unbounded Z°-maximal polyhedra are
[0,1] x R* and conv ((0,0), (0,2), (2,0)) % IR, which are R*-maximal.

We distinguish lattice-free polytopes in 7(Z*) by lattice width: for a convex set
C, the lattice width is

W(C) == min (max<z, x) — min (z. y>),

zez9\{o} \ x€C
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. Background and Result Proof idea Rational polyhedra
Proof idea 00000 08000 o

Sufficient to consider polytopes: unbounded Z°-maximal polyhedra are
[0,1] x R* and conv ((0,0), (0,2), (2,0)) % IR, which are R*-maximal.

We distinguish lattice-free polytopes in 7(Z*) by lattice width: for a convex set
C, the lattice width is

W(C) == min (max<z, x) = min (z. y)).

ze29\ {0} \ x€C

» lattice width one: not possible
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. Background and Result Proof idea Rational polyhedra
Proof idea 00000 08000 o

Sufficient to consider polytopes: unbounded Z°-maximal polyhedra are
[0,1] x R* and conv ((0,0), (0,2), (2,0)) % IR, which are R*-maximal.

We distinguish lattice-free polytopes in 7(Z*) by lattice width: for a convex set
C, the lattice width is

zezd\{o} \ x€C

W(C) == min (max (2, %) —min (z. y)).

» lattice width one: not possible

» two cases: lattice width two or lattice width three or higher
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Background and Result Proof idea Rational polyhedr:

Proof idea(cont.) 00000 00e00 o

For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).
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For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).

Characterize Py := {x € R* : (x,0) € P}:

J. A. Kriimpelmann Maximality properties of rational lattice-free polyhedra GeoSym, Veszprém 2015 8 /11



Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 00e00 o

For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).

Characterize Py := {x € R” : (x,0) € P}: Py is a polytope in P(17°) and it is
7?-maximal lattice-free.

J. A. Kriimpelmann Maximality properties of rational lattice-free polyhedra GeoSym, Veszprém 2015 8 /11



Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 00e00 o

For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).

Characterize Py := {x € R” : (x,0) € P}: Py is a polytope in P(17°) and it is
7?-maximal lattice-free.

Enumerate possibilities for Pj.
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 00e00 o

For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).

Characterize Py := {x € R” : (x,0) € P}: Py is a polytope in P(17°) and it is
7?-maximal lattice-free.

Enumerate possibilities for Pj.

Construct P from Pg.
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 00e00 o

For lattice width two: assume P C R” x [~1,1] (via unimodular
transformation).

Characterize Py := {x € R” : (x,0) € P}: Py is a polytope in P(17°) and it is
7?-maximal lattice-free.

Enumerate possibilities for Pj.
Construct P from Py. Result: enumeration of all seven Z*-maximal polytopes

in P(7*) with lattice width two; all of which are R*-maximal.
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Background and Result Proof idea Rational polyhedra

Z2-maximal polytopes in P(3Z?) 00000 00080 °
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Background and Result

Proof idea(cont.) 00000

Rational polyhedra
o]

For lattice width three or higher:
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
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Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.

Using tools from Geometry of Numbers:
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.

Using tools from Geometry of Numbers:

» MINKOWSKI’S convex body theorems,
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.

Using tools from Geometry of Numbers:
» MINKOWSKI’S convex body theorems,
» BRUNN-MINKOWSKI inequality,
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
Using tools from Geometry of Numbers:

» MINKOWSKI’S convex body theorems,

» BRUNN-MINKOWSKI inequality,

» KANNAN & LOVASZ’S inequalities on successive minima and covering
minima,
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Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
Using tools from Geometry of Numbers:
» MINKOWSKI’S convex body theorems,
» BRUNN-MINKOWSKI inequality,
» KANNAN & LOVASZ’S inequalities on successive minima and covering
minima,
» flatness constant in dimension 2 (HURKENS)
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
Using tools from Geometry of Numbers:
» MINKOWSKI’S convex body theorems,
» BRUNN-MINKOWSKI inequality,
» KANNAN & LOVASZ’S inequalities on successive minima and covering
minima,
» flatness constant in dimension 2 (HURKENS)

we obtain bounds on volume and some other parameters.
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
Using tools from Geometry of Numbers:
» MINKOWSKI’S convex body theorems,
» BRUNN-MINKOWSKI inequality,
» KANNAN & LOVASZ’S inequalities on successive minima and covering
minima,
» flatness constant in dimension 2 (HURKENS)
we obtain bounds on volume and some other parameters.

We derive an algorithm to find all Z*-maximal polytopes in P(7*) with lattice
width three or higher
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Background and Result Proof idea Rational polyhedra

Proof idea(cont.) 00000 ooocoe o

For lattice width three or higher: computer search.
We need useful bounds on the size of the polytopes.
Using tools from Geometry of Numbers:
» MINKOWSKI’S convex body theorems,
» BRUNN-MINKOWSKI inequality,
» KANNAN & LOVASZ’S inequalities on successive minima and covering
minima,
» flatness constant in dimension 2 (HURKENS)
we obtain bounds on volume and some other parameters.

We derive an algorithm to find all Z*-maximal polytopes in P(7*) with lattice
width three or higher and check them for R*-maximality to complete the proof.
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Background and Result Proof idea Rational polyhedra

Generalization to rational polyhedra 00000 o000 .

Theorem (AVERKOV & K. & WELTGE (2015+))

Let d.s € N and let P € P(17°) be lattice-free. Then if d =1 or
d=2,s€{l,2} ord=3,s=1,

P is Z9-maximal if and only if P is RY-maximal.
Furthermore, for all other pairs d, s, this equivalence does not hold.
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Background and Result Proof idea Rational polyhedra
00000 [e]e]e]e]e] o]

Thank you for your attention!

Koszonom!
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