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Background & CALGARY

Let EY denote the d-dimensional Euclidean space. A d-dimensional convex
body K is a compact convex subset of E¢ with nonempty interior.

Conjecture 1 (Hadwiger Covering Conjecture (1960))

K can be covered by 29 of its smaller positive homothets and 29
homothets are needed only if K is an affine d-cube.

The illumination number /(K) of K is the smallest n for which the
boundary of K can be illuminated by n points/directions.

Boltyanski (1960) showed that /(K) = n if and only if the smallest number
of smaller positive homothets of K that cover K is n.

Conjecture 2 (lllumination Conjecture (1960))
I(K) <29, and I(K) = 29 only if K is an affine d-cube.
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Question: How ‘economically’ can we cover K by a few small homothets?

Swanepoel (2005) defined the covering parameter of a d-dimensional
convex body.

C(K):inf{Zﬁ c KQU()\,-K—l—t,-),O<)\,-<1,t,-€IEd}.

1

Large homothets are penalized.

I(K) < C(K).

C(K) = 0(29d?Ind), if K is o-symmetric.
C(K) = 0(49d3/?In d), in general.

If K is o-symmetric,

e 6 6 o o

ill(K) < 2C(K),
where ill(K) is the illumination parameter of K [Bezdek (1992)].
o Let C? denote a d-dimensional cube, then C(C9) = 29+1,
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Denote by K¢ the (compact) space of d-dimensional convex bodies under
the (multiplicative) Banach-Mazur distance:

dem(K,L)=inf{§>1:ae K, bel L—bC T(K—a)CsL—b)},

where the infimum is taken over all invertible linear operators
T:EY — RE9.

Define ym(K) to be the minimal homothety ratio required to cover K by
m positive homothets.

'ym(K):inf{)\>0:K§U(/\K—Ft,-),t,-GIEd,izl,...,m}.
i=1

o Originally, introduced by Lassak (1986).

o Zong (2010) reintroduced it as a functional on K9 and proved it to
be uniformly continuous.

o In fact, ym(K) < dam(K, L)ym(L), for any K, L € K9. [B-K (2015)]
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The covering index & CALGARY

Definition 3
Let K € K9. We define the covering index of K as

m

T K 1/2,m€N}.

coin(K) = inf{

Intuitively, coin(K) measures how well K can be covered by a relatively
small number of positive homothets all corresponding to the same
relatively small homothety ratio not exceeding 1/2.

Results on covering index appear in

K. Bezdek and M. A. Khan, The covering index of convex bodies,
arXiv:1503.03111v3 [math.MG] (16 June, 2015).
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Why vm(K) < 1/27

1) Rogers (1963), Verger-Gaugry (2005), O'Rourke (2012) and others
investigated the minimum number of homothets of ratio 1/2 or less
needed to cover a d-dimensional ball.

2) Easier to find exact values (for infinitely many convex bodies),
estimates and optimizers.

3) Define

. m
fn(K) = 1= m(K)’
00, otherwise.

Then coin(K) = inf {f,(K) : m € N}.

if ym(K) <1/2,

For any K, L € K? and m € N such that v,(K) <1/2 and y,(L) < 1/2,

oK) < o (K, Dfn(L), ) > 520D (1),

The above relations don't work without restricting the homothety ratios.
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Proposition 4 (Relation with other quantities)

For any o-symmetric d-dimensional convex body K,
vein(K) <Iill(K) < 2C(K) < 2coin(K),

and in general

I(K) < C(K) < coin(K).

v

Here vein(K) denotes the the vertex index [Bezdek, Litvak (2007)] of the
o-symmetric convex body K.

Proposition 5 (Rogers-type bounds)

Given K € K9, d > 2, we have

229tld(Ind +Inind +5) = 0(4%dInd), K o-symmetric,

coin(K) < 2d
(K) 2d+1< p > d(Ind +1Inlnd +5) = 0(89d Ind), otherwise.

v
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Lemma 6 (Monotonicity)

Let j < m be positive integers. Then for any d-dimensional convex body
K the inequality frn(K) < f;(K) implies m < f;(K).

This shows that the covering index of any convex body can be obtained by
calculating a finite minimum.

In particular, if f;(K) < oo for some j, then
coin(K) = min {f(K) : m < fi(K)}.

Example
An affine regular convex hexagon H

can be covered by 6 (and no fewer)
half-sized homothets. Thus
coin(H) < fo(H) < 12 and

coin(H) = inf{f,(H) : m < 12} < 12.

(In fact, coin(H) = 12.)
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For any K, L € K9, let N(K, L) denote the covering number of K by L,
i.e., the minimum number of translates of L needed to cover K.

coin(K) =inf { 1" s n(K) < 5ome 1 p = i MR

Definition 7

We say that a convex body K € K7 is tightly covered if for any
0 < A< 1, K contains at least N(K, AK) points no two of which belong
to the same homothet of K with homothety ratio \.

o The line segment ¢ € K1 is tightly covered.

@ Any finite direct vector sum of tightly covered convex bodies is tightly
covered.

@ For d > 2, the d-dimensional cube C? is tightly covered.

o Not all convex bodies are tightly covered (e.g., the circle).
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Theorem 8 (Direct vector sums)

(i) Let BY =11 & --- © L, be a decomposition of E¥ into the direct vector
sum of its linear subspaces LL; and let K; C IL; be convex bodies, then

N K,, K
max coin(Kj) < coin(K1&---®©K,) < inf I AKi) < Hcom
A<t

1<i<n

(ii) If in addition, any n — 1 of the K!s are tightly covered, then

N( K,, K
max coin(Kj) < coin(Ki&- - -@©Kp) = inf I 1 AKi) < Hcom
1<i<n a<i

(iii) For any (d + 1)-dimensional I-codimensional cylinder K & ¢,

COin(K b E) = 4N1/2(K)
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Let A9 B9 and C9 denote the d-simplex, d-dimensional ball and
d-dimensional cube, respectively.

Theorem 9 (Minkowski sums)

Let Ki,...,K, € K9. Then

n

N(Ki, AK;)
? < coin(Ky + -+ + Kj) < inf [y N, <Hcom(K

A<l 1—A
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Theorem 10 (Continuity)

Let d and m be any positive integers, K9, := {K € K¢ : yn(K) < 1/2}
and K9 := {K € K9 : yn(K) # 1/2,m € N}.
(i) For any K, L € K9,

dem (K, L)
> 2o (K. L) ~ fm(L)- (1)

fm(K) < dBM(K7 L)fm(L)7 fm(K)

(i) The functional f, : K& — R is Lipschitz continuous. On the other
hand, f, : K¢ — R U {+o00} is lower semicontinuous.

(iii) Define Ix = {i : vi(K) < 1/2} = {i : K € K¢}, for any d-dimensional
convex body K. If I} C Ik, for some K, L € K9, then

2dem(K, L) — 1
dem(K, L)

coin(K) < coin(L) < dpm(K, L) coin(L). (2)

(iv) The functional coin : K9 — R is lower semicontinuous.
(v) The functional coin : K9 — R is continuous.

v
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Theorem 11 (Optimizers)

(i) For any K € K9, coin(C9) = 29%1 < coin(K) and so d-cubes minimize
the covering index in all dimensions.

(ii) If K is a planar convex body then coin(K) < coin(B?) = 14.

(iii) If K & £ is a 1-codimensional cylinder in K3, then
coin(K @ ¢) < coin(B2 & /) = 28.
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Verger-Gaugry (2005) showed that
in any dimension d > 2 one can
cover a ball of radius 1/2 < r <1
with

O((2r)¥*d%?In d)

balls of radius 1/2. Thus

coin(BY) = 0(2?d*?Ind). coin(B3) < 41.53398... .

Open Problem

Prove that for any d-dimensional convex body K, coin(K) < coin(B9)
holds.

An affirmative answer would immensely improve the known general upper
bound on the illumination number from O(49d In d) to O(279d%/? log d).
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A-covering indices and the covering limit & CALGARY

The covering index can be generalized in the following natural way.

Definition 12

Let K € K9 and 0 < A < 1. We define the A-covering index of K as

coiny(K) = inf {T”;(K) Ym(K) < A\, m e N} .

Intuitively, coiny(K) measures how K can be covered by a relatively small
number of positive homothets all corresponding to the same relatively
small homothety ratio not exceeding A.

Also
coin(K) = coiny /5(K).
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What happens as A becomes large?

Definition 13

Let K € K9. We define the covering limit of K as

colim(K) = /\Iinlw coiny (K).
|

Observe that

colim(K) = inf{l—fyn:n(!ﬂ Cvm(K) < l,mEN}.
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o Let0<a<1/2and 1/2 < f < 1, then for any o-symmetric
d-dimensional convex body K,

ilN(K) <2C(K) < 2colim(K) < 2coing(K) < 2coin(K) < 2coiny(K),
and in general
I(K) < C(K) < colim(K) < coing(K) < coin(K) < coing(K).

o Several properties of the covering index such as monotonicity, direct
vector sum compatibility, Minkowski sum compatibility hold for
A-covering indices and the covering limit.

o However, there are problems with continuity, determining exact
values and finding optimizers.

o If K is a planar convex body, then colim(K) > colim(C?) = 8.

o K. Bezdek and M. A. Khan, Quantitative covering of convex bodies,
(preprint).
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The following table can be extended indefinitely by including coin- and
colim-values (or estimates) for direct vector sums and Minkowski sums of
convex bodies appearing in the table.

[ K [ m Ym(K) coin(K) [ m Ym(K) colim(K) |
7 2 1/2 4 2 1/2 4
H 6 1/2 12 3 2/3 9
A? 6 1/2 12 3 2/3 9
B? 7 1/2 14 5 0.609... 12.800...
B3 > 21 <049... <4153...
B 0(29d3/2Ind)  <1/2 0(29d3/2Ind) | ...
cd od 1/2 2d+1 od 1/2 od+1
Al >d+1 <& < (d +1)2
Hope | 12 1/2 24 12 1/2 24
A’qr | 12 1/2 24 12 1/2 24
B2qr | 14 1/2 28 14 1/2 28

Table 1 : Known values (or estimates) of coin(-) and colim(-) together with the
corresponding m and 7, (+).
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Fractional covering index & CALGARY

Classical covering numbers:

N(K, L) = minimum number of translates of L needed to cover K.
N(K, L) = minimum number of translates of L by points in K needed to
cover K.

Weighted analogues: [Artstein-Avidan, Raz (2011)]

A set {(wj, xi) : wi > 0,x; € K}7_; of n € N pairs is said to be an internal
weighted cover of K by L if for all x € K,

n
Z wiljyy(x) > 1.
i=1

N, (K, L) = infimal > ; w; over all internal weighted covers of K by L. J

Muhammad Ali Khan (UCalgary) Quantitative covering of convex bodies 19 /23



If we remove the restriction of translating L by points in K, we obtain the
weighted covering number N, (K, L) [Artstein-Avidan, Slomka (2013)].

Warning:

The quantity N, (K, L) and the results obtained in [Artstein-Avidan, Raz
(2011)] work well when L is o-symmetric but not in general.

The weighted covering number N, (K, L) works for all convex bodies. But
not much is known about it.
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Let C? denote the subspace of d-dimensional o-symmetric convex bodies.

Definition 14
Let K € K9. We define the fractional covering index of K as

N, (K, \K
feoin(K) = ,\i<n1f/2 i—)\)

Let K € C?. We define the internal fractional covering index of K as

— N, (K, \K

Clearly, fcoin(K) < fcoin(K), for any K € C? and fcoin(K) < coin(K), for
any K € K9.

The quantities fcoiny(K), fcoiny(K), fcolim(K) and fcolim(K) can be
defined analogously.
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Let K € C9. Ifforall0 < A <1, N,(K,\K) = N(K, AK), then for any
LeC%, dycN the body K @ L is tightly covered.

Theorem 16

Let K € K9. If K is tightly covered then for all 0 < \ < 1,
N, (K, \K) = N(K, AK).

| \

Corollary 17

For any 0 < A <1 and d € N we have N, (¢, \l) = N(¢, \l) and
N, (C4 AC9) = N(C?,AC?) and so

fcoin(¢) = coin(¢) = 4,

fcoin(CY) = coin(CY) = 29+,
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Theorem 18

LetE=1L;®---®L, bea decomposition of E9 into the direct vector
sum of its linear subspaces LL; and let K; C IL; be convex bodies, then

n

N K,,AK
fcoin(K1® -+ @ K,,) < inf [Tz < chom (3)
<3

and if K,-’s are o-symmetric,

fcoin(K1 @ -+ - @ Kp) =

[T No(Ki, AKD) e
f% T < il:Ilfcom(K,-). (4)

v

Relation (4), follows from
Ny, (K1 @ K2, A(K1 ® K2)) = Noo(K1, AK1) Ny (K2, AK2).

A detailed treatment of weighted covering numbers and fractional covering
indices appears in our paper:

K. Bezdek and M. A. Khan, On fractional coverings, (forthcoming).
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