Quantitative covering of convex bodies

Károly Bezdek and Muhammad Ali Khan

Centre for Computational and Discrete Geometry Department of Mathematics & Statistics, University of Calgary

GeoSym 2015, University of Pannonia, Veszprém, July 1, 2015

Let \mathbb{E}^d denote the *d*-dimensional Euclidean space. A *d*-dimensional convex body *K* is a compact convex subset of \mathbb{E}^d with nonempty interior.

Conjecture 1 (Hadwiger Covering Conjecture (1960))

K can be covered by 2^d of its smaller positive homothets and 2^d homothets are needed only if K is an affine d-cube.

The **illumination number** I(K) of K is the smallest n for which the boundary of K can be illuminated by n points/directions.

Boltyanski (1960) showed that I(K) = n if and only if the smallest number of smaller positive homothets of K that cover K is n.

Conjecture 2 (Illumination Conjecture (1960))

 $I(K) \leq 2^d$, and $I(K) = 2^d$ only if K is an affine d-cube.

Question: How 'economically' can we cover K by a few small homothets?

Swanepoel (2005) defined the **covering parameter** of a d-dimensional convex body.

$$C(K) = \inf \left\{ \sum_i rac{1}{1-\lambda_i} : K \subseteq igcup_i (\lambda_i K + t_i), 0 < \lambda_i < 1, t_i \in \mathbb{E}^d
ight\}.$$

- Large homothets are penalized.
- I(K) < C(K).
- $C(K) = O(2^d d^2 \ln d)$, if K is o-symmetric.
- $C(K) = O(4^d d^{3/2} \ln d)$, in general.
- If K is o-symmetric,

$$\operatorname{ill}(K) \leq 2C(K),$$

where ill(K) is the **illumination parameter** of K [Bezdek (1992)]. • Let C^d denote a d-dimensional cube, then $C(C^d) = 2^{d+1}$. Denote by \mathcal{K}^d the (compact) space of *d*-dimensional convex bodies under the (multiplicative) Banach-Mazur distance:

$$d_{BM}(K,L) = \inf \left\{ \delta \ge 1 : a \in K, b \in L, L - b \subseteq T(K - a) \subseteq \delta(L - b) \right\},$$

where the infimum is taken over all invertible linear operators $\mathcal{T}: \mathbb{E}^d \longrightarrow \mathbb{E}^d$.

Define $\gamma_m(K)$ to be the **minimal homothety ratio** required to cover K by m positive homothets.

$$\gamma_m(\mathcal{K}) = \inf \left\{ \lambda > 0 : \mathcal{K} \subseteq \bigcup_{i=1}^m (\lambda \mathcal{K} + t_i), t_i \in \mathbb{E}^d, i = 1, \dots, m
ight\}.$$

- Originally, introduced by Lassak (1986).
- Zong (2010) reintroduced it as a functional on \mathcal{K}^d and proved it to be uniformly continuous.

• In fact,
$$\gamma_m(K) \leq d_{BM}(K,L)\gamma_m(L)$$
, for any $K, L \in \mathcal{K}^d$. [B-K (2015)]

Definition 3

Let $K \in \mathcal{K}^d$. We define the **covering index** of K as

$$\operatorname{coin}(\mathcal{K}) = \inf \left\{ \frac{m}{1 - \gamma_m(\mathcal{K})} : \gamma_m(\mathcal{K}) \leq 1/2, m \in \mathbb{N} \right\}.$$

Intuitively, coin(K) measures how well K can be covered by a relatively small number of positive homothets all corresponding to the same relatively small homothety ratio not exceeding 1/2.

Results on covering index appear in

K. Bezdek and M. A. Khan, The covering index of convex bodies, arXiv:1503.03111v3 [math.MG] (16 June, 2015).

Why $\gamma_m(K) \leq 1/2?$

1) Rogers (1963), Verger-Gaugry (2005), O'Rourke (2012) and others investigated the minimum number of homothets of ratio 1/2 or less needed to cover a *d*-dimensional ball.

2) Easier to find exact values (for infinitely many convex bodies), estimates and optimizers.

3) Define

$$f_m(K) = \left\{ egin{array}{cc} rac{m}{1-\gamma_m(K)}, & ext{if } \gamma_m(K) \leq 1/2, \ \infty, & ext{otherwise.} \end{array}
ight.$$

Then $\operatorname{coin}(K) = \inf \{ f_m(K) : m \in \mathbb{N} \}.$

For any $K, L \in \mathcal{K}^d$ and $m \in \mathbb{N}$ such that $\gamma_m(K) \leq 1/2$ and $\gamma_m(L) \leq 1/2$, $f_m(K) \leq d_{BM}(K, L)f_m(L), \quad f_m(K) \geq \frac{d_{BM}(K, L)}{2d_{BM}(K, L) - 1}f_m(L).$

The above relations don't work without restricting the homothety ratios.

Proposition 4 (Relation with other quantities)

For any o-symmetric d-dimensional convex body K,

$$\operatorname{vein}(K) \leq \operatorname{ill}(K) \leq 2C(K) \leq 2\operatorname{coin}(K),$$

and in general

$$I(K) < C(K) \leq \operatorname{coin}(K).$$

Here vein(K) denotes the the **vertex index** [Bezdek, Litvak (2007)] of the *o*-symmetric convex body K.

Proposition 5 (Rogers-type bounds)

Given $K \in \mathcal{K}^d$, $d \ge 2$, we have

$$\operatorname{coin}(K) < \begin{cases} 2^{2d+1}d(\ln d + \ln \ln d + 5) = O(4^{d} d \ln d), & K \text{ o-symmetric,} \\ 2^{d+1}\binom{2d}{d}d(\ln d + \ln \ln d + 5) = O(8^{d} d \ln d), & \text{otherwise.} \end{cases}$$

Lemma 6 (Monotonicity)

Let j < m be positive integers. Then for any d-dimensional convex body K the inequality $f_m(K) < f_j(K)$ implies $m < f_j(K)$.

This shows that the covering index of any convex body can be obtained by calculating a finite minimum.

In particular, if $f_j(K) < \infty$ for some j, then

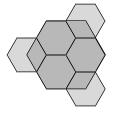
$$\operatorname{coin}(K) = \min \left\{ f_m(K) : m < f_j(K) \right\}.$$

Example

An affine regular convex hexagon H can be covered by 6 (and no fewer) half-sized homothets. Thus $coin(H) \le f_6(H) \le 12$ and

$$coin(H) = inf\{f_m(H) : m < 12\} \le 12.$$

$$(\ln \text{ fact, } \operatorname{coin}(H) = 12.)$$



For any $K, L \in \mathcal{K}^d$, let N(K, L) denote the **covering number** of K by L, i.e., the minimum number of translates of L needed to cover K.

$$\operatorname{coin}(\mathcal{K}) = \inf\left\{\frac{m}{1 - \gamma_m(\mathcal{K})} : \gamma_m(\mathcal{K}) \leq \frac{1}{2}, m \in \mathbb{N}\right\} = \inf_{\lambda \leq \frac{1}{2}} \frac{N(\mathcal{K}, \lambda \mathcal{K})}{1 - \lambda}$$

Definition 7

We say that a convex body $K \in \mathcal{K}^d$ is **tightly covered** if for any $0 < \lambda < 1$, K contains at least $N(K, \lambda K)$ points no two of which belong to the same homothet of K with homothety ratio λ .

- The line segment $\ell \in \mathcal{K}^1$ is tightly covered.
- Any finite direct vector sum of tightly covered convex bodies is tightly covered.
- For $d \ge 2$, the *d*-dimensional cube C^d is tightly covered.
- Not all convex bodies are tightly covered (e.g., the circle).

Theorem 8 (Direct vector sums)

(i) Let $\mathbb{E}^d = \mathbb{L}_1 \oplus \cdots \oplus \mathbb{L}_n$ be a decomposition of \mathbb{E}^d into the direct vector sum of its linear subspaces \mathbb{L}_i and let $K_i \subseteq \mathbb{L}_i$ be convex bodies, then

$$\max_{1 \le i \le n} \operatorname{coin}(\kappa_i) \le \operatorname{coin}(\kappa_1 \oplus \cdots \oplus \kappa_n) \le \inf_{\lambda \le \frac{1}{2}} \frac{\prod_{i=1}^n N(\kappa_i, \lambda \kappa_i)}{1 - \lambda} < \prod_{i=1}^n \operatorname{coin}(\kappa_i).$$

(ii) If in addition, any n - 1 of the K'_i 's are tightly covered, then

$$\max_{1 \leq i \leq n} \operatorname{coin}(K_i) \leq \operatorname{coin}(K_1 \oplus \cdots \oplus K_n) = \inf_{\lambda \leq \frac{1}{2}} \frac{\prod_{i=1}^n N(K_i, \lambda K_i)}{1 - \lambda} < \prod_{i=1}^n \operatorname{coin}(K_i).$$

(iii) For any (d + 1)-dimensional 1-codimensional cylinder $K \oplus \ell$,

$$\operatorname{coin}(K \oplus \ell) = 4N_{1/2}(K).$$

Let Δ^d , B^d and C^d denote the *d*-simplex, *d*-dimensional ball and *d*-dimensional cube, respectively.

Theorem 9 (Minkowski sums)

Let $K_1, \ldots, K_n \in \mathcal{K}^d$. Then ? $\leq \operatorname{coin}(K_1 + \cdots + K_n) \leq \inf_{\lambda \leq \frac{1}{2}} \frac{\prod_{i=1}^n N(K_i, \lambda K_i)}{1 - \lambda} < \prod_{i=1}^n \operatorname{coin}(K_i).$

Theorem 10 (Continuity)

Let d and m be any positive integers, $\mathcal{K}_m^d := \{ K \in \mathcal{K}^d : \gamma_m(K) \leq 1/2 \}$ and $\mathcal{K}^{d*} := \{ K \in \mathcal{K}^d : \gamma_m(K) \neq 1/2, m \in \mathbb{N} \}.$ (i) For any $K, L \in \mathcal{K}_m^d$,

$$f_m(K) \le d_{BM}(K,L)f_m(L), \quad f_m(K) \ge \frac{d_{BM}(K,L)}{2d_{BM}(K,L)-1}f_m(L).$$
(1)

(ii) The functional $f_m : \mathcal{K}_m^d \longrightarrow \mathbb{R}$ is Lipschitz continuous. On the other hand, $f_m : \mathcal{K}^d \longrightarrow \mathbb{R} \cup \{+\infty\}$ is lower semicontinuous. (iii) Define $I_K = \{i : \gamma_i(K) \le 1/2\} = \{i : K \in \mathcal{K}_i^d\}$, for any d-dimensional convex body K. If $I_L \subseteq I_K$, for some K, $L \in \mathcal{K}^d$, then

$$\operatorname{coin}(K) \leq \frac{2d_{BM}(K,L) - 1}{d_{BM}(K,L)} \operatorname{coin}(L) \leq d_{BM}(K,L) \operatorname{coin}(L).$$
(2)

(iv) The functional coin : $\mathcal{K}^d \longrightarrow \mathbb{R}$ is lower semicontinuous. (v) The functional coin : $\mathcal{K}^{d*} \longrightarrow \mathbb{R}$ is continuous.

Theorem 11 (Optimizers)

(i) For any $K \in \mathcal{K}^d$, $\operatorname{coin}(C^d) = 2^{d+1} \leq \operatorname{coin}(K)$ and so d-cubes minimize the covering index in all dimensions.

(ii) If K is a planar convex body then $coin(K) \le coin(B^2) = 14$.

(iii) If $K \oplus \ell$ is a 1-codimensional cylinder in \mathcal{K}^3 , then $\operatorname{coin}(K \oplus \ell) \leq \operatorname{coin}(B^2 \oplus \ell) = 28$.

Verger-Gaugry (2005) showed that in any dimension d > 2 one can cover a ball of radius $1/2 < r \leq 1$ with

 $O((2r)^{d-1}d^{3/2}\ln d)$

balls of radius 1/2. Thus

$$\operatorname{coin}(B^d) = O(2^d d^{3/2} \ln d).$$

$coin(B^3) \le 41.53398...$

Open Problem

Prove that for any d-dimensional convex body K, $coin(K) \leq coin(B^d)$ holds.

An affirmative answer would immensely improve the known general upper bound on the illumination number from $O(4^d \ln d)$ to $O(2^d d^{3/2} \log d)$.

$\lambda\text{-covering}$ indices and the covering limit

The covering index can be generalized in the following natural way.

Definition 12

Let $K \in \mathcal{K}^d$ and $0 < \lambda < 1$. We define the λ -covering index of K as

$$\operatorname{coin}_{\lambda}(K) = \inf \left\{ \frac{m}{1 - \gamma_m(K)} : \gamma_m(K) \leq \lambda, m \in \mathbb{N} \right\}.$$

Intuitively, $\operatorname{coin}_{\lambda}(K)$ measures how K can be covered by a relatively small number of positive homothets all corresponding to the same relatively small homothety ratio not exceeding λ .

Also

$$\operatorname{coin}(K) = \operatorname{coin}_{1/2}(K).$$

What happens as λ becomes large?

Definition 13

Let $K \in \mathcal{K}^d$. We define the **covering limit** of K as

$$\operatorname{colim}(\mathcal{K}) = \lim_{\lambda \to 1^-} \operatorname{coin}_{\lambda}(\mathcal{K}).$$

Observe that

$$\operatorname{colim}(\mathcal{K}) = \inf \left\{ \frac{m}{1 - \gamma_m(\mathcal{K})} : \gamma_m(\mathcal{K}) < 1, m \in \mathbb{N} \right\}.$$

• Let $0 < \alpha < 1/2$ and $1/2 < \beta < 1$, then for any *o*-symmetric *d*-dimensional convex body *K*,

 $\operatorname{ill}(\mathcal{K}) \leq 2\mathcal{C}(\mathcal{K}) \leq 2\operatorname{colim}(\mathcal{K}) \leq 2\operatorname{coin}_{\beta}(\mathcal{K}) \leq 2\operatorname{coin}_{\alpha}(\mathcal{K}),$

and in general

 $I(K) < C(K) \le \operatorname{colim}(K) \le \operatorname{coin}_{\beta}(K) \le \operatorname{coin}_{\alpha}(K) \le \operatorname{coin}_{\alpha}(K).$

- Several properties of the covering index such as monotonicity, direct vector sum compatibility, Minkowski sum compatibility hold for λ-covering indices and the covering limit.
- However, there are problems with continuity, determining exact values and finding optimizers.
- If K is a planar convex body, then $\operatorname{colim}(K) \ge \operatorname{colim}(C^2) = 8$.
- K. Bezdek and M. A. Khan, Quantitative covering of convex bodies, (*preprint*).

The following table can be extended indefinitely by including coin- and colim-values (or estimates) for direct vector sums and Minkowski sums of convex bodies appearing in the table.

K	т	$\gamma_m(K)$	$\operatorname{coin}(K)$	т	$\gamma_m(K)$	colim(K)
l	2	1/2	4	2	1/2	4
H	6	1/2	12	3	2/3	9
Δ^2	6	1/2	12	3	2/3	9
B^2	7	1/2	14	5	0.609	12.800
B ³	≥ 21	$\leq 0.49\ldots$	\leq 41.53			
B^d	$O(2^d d^{3/2} \ln d)$	$\leq 1/2$	$O(2^d d^{3/2} \ln d)$			
C ^d	2 ^{<i>d</i>}	1/2	2^{d+1}	2 ^d	1/2	2^{d+1}
Δ^d				$\geq d+1$	$\leq \frac{d}{d+1}$	$\leq (d+1)^2$
$H \oplus \ell$	12	1/2	24	12	1/2	24
$\Delta^2 \oplus \ell$	12	1/2	24	12	1/2	24
$B^2\oplus\ell$	14	1/2	28	14	1/2	28
:	:	:	:	:	:	:
•		•	•		•	

Table 1 : Known values (or estimates) of $coin(\cdot)$ and $colim(\cdot)$ together with the corresponding *m* and $\gamma_m(\cdot)$.

Classical covering numbers:

N(K, L) = minimum number of translates of L needed to cover K.

 $\overline{N}(K, L) =$ minimum number of translates of L by points in K needed to cover K.

Weighted analogues: [Artstein-Avidan, Raz (2011)]

A set $\{(\omega_i, x_i) : \omega_i > 0, x_i \in K\}_{i=1}^n$ of $n \in \mathbb{N}$ pairs is said to be an **internal** weighted cover of K by L if for all $x \in K$,

$$\sum_{i=1}^n \omega_i \mathbb{1}_{L+x_i}(x) \ge 1.$$

 $\overline{N}_{\omega}(K,L) = \text{infimal } \sum_{i=1}^{n} \omega_i \text{ over all internal weighted covers of } K \text{ by } L.$

If we remove the restriction of translating L by points in K, we obtain the weighted covering number $N_{\omega}(K, L)$ [Artstein-Avidan, Slomka (2013)].

Warning:

The quantity $\overline{N}_{\omega}(K, L)$ and the results obtained in [Artstein-Avidan, Raz (2011)] work well when L is o-symmetric but not in general.

The weighted covering number $N_{\omega}(K, L)$ works for all convex bodies. But not much is known about it.

Let \mathcal{C}^d denote the subspace of *d*-dimensional *o*-symmetric convex bodies.

Definition 14

Let $K \in \mathcal{K}^d$. We define the **fractional covering index** of K as

$$\mathsf{fcoin}(K) = \inf_{\lambda \leq 1/2} \frac{N_{\omega}(K, \lambda K)}{1 - \lambda}.$$

Let $K \in C^d$. We define the **internal fractional covering index** of K as

$$\overline{\mathsf{fcoin}}(\mathsf{K}) = \inf_{\lambda \leq 1/2} rac{\overline{N}_\omega(\mathsf{K},\lambda\mathsf{K})}{1-\lambda}.$$

Clearly, fcoin(K) $\leq \overline{\text{fcoin}}(K)$, for any $K \in C^d$ and fcoin(K) $\leq \text{coin}(K)$, for any $K \in \mathcal{K}^d$.

The quantities $fcoin_{\lambda}(K)$, $\overline{fcoin}_{\lambda}(K)$, fcolim(K) and $\overline{fcolim}(K)$ can be defined analogously.

Theorem 15

Let $K \in C^{d}$. If for all $0 < \lambda < 1$, $\overline{N}_{\omega}(K, \lambda K) = \overline{N}(K, \lambda K)$, then for any $L \in C^{d_0}$, $d_0 \in \mathbb{N}$ the body $K \oplus L$ is tightly covered.

Theorem 16

Let $K \in \mathcal{K}^d$. If K is tightly covered then for all $0 < \lambda < 1$, $N_{\omega}(K, \lambda K) = N(K, \lambda K)$.

Corollary 17

For any $0 < \lambda < 1$ and $d \in \mathbb{N}$ we have $N_{\omega}(\ell, \lambda \ell) = N(\ell, \lambda \ell)$ and $N_{\omega}(C^d, \lambda C^d) = N(C^d, \lambda C^d)$ and so

$$fcoin(\ell) = coin(\ell) = 4,$$

$$fcoin(C^d) = coin(C^d) = 2^{d+1}.$$

Theorem 18

Let $\mathbb{E}^d = \mathbb{L}_1 \oplus \cdots \oplus \mathbb{L}_n$ be a decomposition of \mathbb{E}^d into the direct vector sum of its linear subspaces \mathbb{L}_i and let $K_i \subseteq \mathbb{L}_i$ be convex bodies, then

$$\operatorname{fcoin}(K_1 \oplus \cdots \oplus K_n) \leq \inf_{\lambda \leq \frac{1}{2}} \frac{\prod_{i=1}^n N_{\omega}(K_i, \lambda K_i)}{1-\lambda} < \prod_{i=1}^n \operatorname{fcoin}(K_i).$$
(3)

and if K's are o-symmetric,

$$\overline{\text{fcoin}}(K_1 \oplus \cdots \oplus K_n) = \inf_{\lambda = \frac{1}{2}} \frac{\prod_{i=1}^n \overline{N}_{\omega}(K_i, \lambda K_i)}{1 - \lambda} < \prod_{i=1}^n \overline{\text{fcoin}}(K_i).$$
(4)

Relation (4), follows from

$$\overline{N}_{\omega}(K_1 \oplus K_2, \lambda(K_1 \oplus K_2)) = \overline{N}_{\omega}(K_1, \lambda K_1)\overline{N}_{\omega}(K_2, \lambda K_2).$$

A detailed treatment of weighted covering numbers and fractional covering indices appears in our paper:

K. Bezdek and M. A. Khan, On fractional coverings, (forthcoming).

Muhammad Ali Khan (UCalgary)

Quantitative covering of convex bodies