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Background

Let Ed denote the d-dimensional Euclidean space. A d-dimensional convex
body K is a compact convex subset of Ed with nonempty interior.

Conjecture 1 (Hadwiger Covering Conjecture (1960))

K can be covered by 2d of its smaller positive homothets and 2d

homothets are needed only if K is an affine d-cube.

The illumination number I (K ) of K is the smallest n for which the
boundary of K can be illuminated by n points/directions.

Boltyanski (1960) showed that I (K ) = n if and only if the smallest number
of smaller positive homothets of K that cover K is n.

Conjecture 2 (Illumination Conjecture (1960))

I (K ) ≤ 2d , and I (K ) = 2d only if K is an affine d-cube.
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Question: How ‘economically’ can we cover K by a few small homothets?

Swanepoel (2005) defined the covering parameter of a d-dimensional
convex body.

C (K ) = inf

{∑
i

1

1− λi
: K ⊆

⋃
i

(λiK + ti ), 0 < λi < 1, ti ∈ Ed

}
.

Large homothets are penalized.

I (K ) < C (K ).

C (K ) = O(2dd2 ln d), if K is o-symmetric.

C (K ) = O(4dd3/2 ln d), in general.

If K is o-symmetric,
ill(K ) ≤ 2C (K ),

where ill(K ) is the illumination parameter of K [Bezdek (1992)].

Let Cd denote a d-dimensional cube, then C (Cd) = 2d+1.
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Denote by Kd the (compact) space of d-dimensional convex bodies under
the (multiplicative) Banach-Mazur distance:

dBM(K , L) = inf {δ ≥ 1 : a ∈ K , b ∈ L, L− b ⊆ T (K − a) ⊆ δ(L− b)} ,

where the infimum is taken over all invertible linear operators
T : Ed −→ Ed .

Define γm(K ) to be the minimal homothety ratio required to cover K by
m positive homothets.

γm(K ) = inf

{
λ > 0 : K ⊆

m⋃
i=1

(λK + ti ), ti ∈ Ed , i = 1, . . . ,m

}
.

Originally, introduced by Lassak (1986).

Zong (2010) reintroduced it as a functional on Kd and proved it to
be uniformly continuous.

In fact, γm(K ) ≤ dBM(K , L)γm(L), for any K , L ∈ Kd . [B-K (2015)]
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The covering index

Definition 3

Let K ∈ Kd . We define the covering index of K as

coin(K ) = inf

{
m

1− γm(K )
: γm(K ) ≤ 1/2,m ∈ N

}
.

Intuitively, coin(K ) measures how well K can be covered by a relatively
small number of positive homothets all corresponding to the same
relatively small homothety ratio not exceeding 1/2.

Results on covering index appear in

K. Bezdek and M. A. Khan, The covering index of convex bodies,
arXiv:1503.03111v3 [math.MG] (16 June, 2015).
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Why γm(K ) ≤ 1/2?

1) Rogers (1963), Verger-Gaugry (2005), O’Rourke (2012) and others
investigated the minimum number of homothets of ratio 1/2 or less
needed to cover a d-dimensional ball.

2) Easier to find exact values (for infinitely many convex bodies),
estimates and optimizers.

3) Define

fm(K ) =


m

1− γm(K )
, if γm(K ) ≤ 1/2,

∞, otherwise.

Then coin(K ) = inf {fm(K ) : m ∈ N}.

For any K , L ∈ Kd and m ∈ N such that γm(K ) ≤ 1/2 and γm(L) ≤ 1/2,

fm(K ) ≤ dBM(K , L)fm(L), fm(K ) ≥ dBM(K , L)

2dBM(K , L)− 1
fm(L).

The above relations don’t work without restricting the homothety ratios.
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Proposition 4 (Relation with other quantities)

For any o-symmetric d-dimensional convex body K ,

vein(K ) ≤ ill(K ) ≤ 2C (K ) ≤ 2 coin(K ),

and in general
I (K ) < C (K ) ≤ coin(K ).

Here vein(K ) denotes the the vertex index [Bezdek, Litvak (2007)] of the
o-symmetric convex body K .

Proposition 5 (Rogers-type bounds)

Given K ∈ Kd , d ≥ 2, we have

coin(K ) <


22d+1d(ln d + ln ln d + 5) = O(4dd ln d), K o-symmetric,

2d+1

(
2d

d

)
d(ln d + ln ln d + 5) = O(8dd ln d), otherwise.
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Lemma 6 (Monotonicity)

Let j < m be positive integers. Then for any d-dimensional convex body
K the inequality fm(K ) < fj(K ) implies m < fj(K ).

This shows that the covering index of any convex body can be obtained by
calculating a finite minimum.

In particular, if fj(K ) <∞ for some j , then

coin(K ) = min {fm(K ) : m < fj(K )} .

Example
An affine regular convex hexagon H
can be covered by 6 (and no fewer)
half-sized homothets. Thus
coin(H) ≤ f6(H) ≤ 12 and

coin(H) = inf{fm(H) : m < 12} ≤ 12.

(In fact, coin(H) = 12.)
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For any K , L ∈ Kd , let N(K , L) denote the covering number of K by L,
i.e., the minimum number of translates of L needed to cover K .

coin(K ) = inf

{
m

1− γm(K )
: γm(K ) ≤ 1

2
,m ∈ N

}
= inf

λ≤ 1
2

N(K , λK )

1− λ
.

Definition 7

We say that a convex body K ∈ Kd is tightly covered if for any
0 < λ < 1, K contains at least N(K , λK ) points no two of which belong
to the same homothet of K with homothety ratio λ.

The line segment ` ∈ K1 is tightly covered.

Any finite direct vector sum of tightly covered convex bodies is tightly
covered.

For d ≥ 2, the d-dimensional cube Cd is tightly covered.

Not all convex bodies are tightly covered (e.g., the circle).
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Theorem 8 (Direct vector sums)

(i) Let Ed = L1⊕ · · · ⊕Ln be a decomposition of Ed into the direct vector
sum of its linear subspaces Li and let Ki ⊆ Li be convex bodies, then

max
1≤i≤n

coin(Ki ) ≤ coin(K1⊕· · ·⊕Kn) ≤ inf
λ≤ 1

2

∏n
i=1 N(Ki , λKi )

1− λ
<

n∏
i=1

coin(Ki ).

(ii) If in addition, any n − 1 of the K ′i s are tightly covered, then

max
1≤i≤n

coin(Ki ) ≤ coin(K1⊕· · ·⊕Kn) = inf
λ≤ 1

2

∏n
i=1 N(Ki , λKi )

1− λ
<

n∏
i=1

coin(Ki ).

(iii) For any (d + 1)-dimensional 1-codimensional cylinder K ⊕ `,

coin(K ⊕ `) = 4N1/2(K ).
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Let ∆d , Bd and Cd denote the d-simplex, d-dimensional ball and
d-dimensional cube, respectively.

Theorem 9 (Minkowski sums)

Let K1, . . . ,Kn ∈ Kd . Then

? ≤ coin(K1 + · · ·+ Kn) ≤ inf
λ≤ 1

2

∏n
i=1 N(Ki , λKi )

1− λ
<

n∏
i=1

coin(Ki ).
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Theorem 10 (Continuity)

Let d and m be any positive integers, Kd
m :=

{
K ∈ Kd : γm(K ) ≤ 1/2

}
and Kd∗ :=

{
K ∈ Kd : γm(K ) 6= 1/2,m ∈ N

}
.

(i) For any K , L ∈ Kd
m,

fm(K ) ≤ dBM(K , L)fm(L), fm(K ) ≥ dBM(K , L)

2dBM(K , L)− 1
fm(L). (1)

(ii) The functional fm : Kd
m −→ R is Lipschitz continuous. On the other

hand, fm : Kd −→ R ∪ {+∞} is lower semicontinuous.
(iii) Define IK = {i : γi (K ) ≤ 1/2} = {i : K ∈ Kd

i }, for any d-dimensional
convex body K . If IL ⊆ IK , for some K , L ∈ Kd , then

coin(K ) ≤ 2dBM(K , L)− 1

dBM(K , L)
coin(L) ≤ dBM(K , L) coin(L). (2)

(iv) The functional coin : Kd −→ R is lower semicontinuous.
(v) The functional coin : Kd∗ −→ R is continuous.
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Theorem 11 (Optimizers)

(i) For any K ∈ Kd , coin(Cd) = 2d+1 ≤ coin(K ) and so d-cubes minimize
the covering index in all dimensions.

(ii) If K is a planar convex body then coin(K ) ≤ coin(B2) = 14.

(iii) If K ⊕ ` is a 1-codimensional cylinder in K3, then
coin(K ⊕ `) ≤ coin(B2 ⊕ `) = 28.
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Verger-Gaugry (2005) showed that
in any dimension d ≥ 2 one can
cover a ball of radius 1/2 < r ≤ 1
with

O((2r)d−1d3/2 ln d)

balls of radius 1/2. Thus

coin(Bd) = O(2dd3/2 ln d). coin(B3) ≤ 41.53398 . . ..

Open Problem

Prove that for any d-dimensional convex body K , coin(K ) ≤ coin(Bd)
holds.

An affirmative answer would immensely improve the known general upper
bound on the illumination number from O(4dd ln d) to O(2dd3/2 log d).
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λ-covering indices and the covering limit

The covering index can be generalized in the following natural way.

Definition 12

Let K ∈ Kd and 0 < λ < 1. We define the λ-covering index of K as

coinλ(K ) = inf

{
m

1− γm(K )
: γm(K ) ≤ λ,m ∈ N

}
.

Intuitively, coinλ(K ) measures how K can be covered by a relatively small
number of positive homothets all corresponding to the same relatively
small homothety ratio not exceeding λ.

Also
coin(K ) = coin1/2(K ).
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What happens as λ becomes large?

Definition 13

Let K ∈ Kd . We define the covering limit of K as

colim(K ) = lim
λ→1−

coinλ(K ).

Observe that

colim(K ) = inf

{
m

1− γm(K )
: γm(K ) < 1,m ∈ N

}
.
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Let 0 < α < 1/2 and 1/2 < β < 1, then for any o-symmetric
d-dimensional convex body K ,

ill(K ) ≤ 2C (K ) ≤ 2 colim(K ) ≤ 2 coinβ(K ) ≤ 2 coin(K ) ≤ 2 coinα(K ),

and in general

I (K ) < C (K ) ≤ colim(K ) ≤ coinβ(K ) ≤ coin(K ) ≤ coinα(K ).

Several properties of the covering index such as monotonicity, direct
vector sum compatibility, Minkowski sum compatibility hold for
λ-covering indices and the covering limit.

However, there are problems with continuity, determining exact
values and finding optimizers.

If K is a planar convex body, then colim(K ) ≥ colim(C 2) = 8.

K. Bezdek and M. A. Khan, Quantitative covering of convex bodies,
(preprint).
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The following table can be extended indefinitely by including coin- and
colim-values (or estimates) for direct vector sums and Minkowski sums of
convex bodies appearing in the table.

K m γm(K) coin(K) m γm(K) colim(K)

` 2 1/2 4 2 1/2 4
H 6 1/2 12 3 2/3 9
∆2 6 1/2 12 3 2/3 9
B2 7 1/2 14 5 0.609 . . . 12.800 . . .
B3 ≥ 21 ≤ 0.49 . . . ≤ 41.53 . . . . . . . . . . . .

Bd O(2dd3/2 ln d) ≤ 1/2 O(2dd3/2 ln d) . . . . . . . . .
Cd 2d 1/2 2d+1 2d 1/2 2d+1

∆d . . . . . . . . . ≥ d + 1 ≤ d
d+1

≤ (d + 1)2

H ⊕ ` 12 1/2 24 12 1/2 24
∆2 ⊕ ` 12 1/2 24 12 1/2 24
B2 ⊕ ` 14 1/2 28 14 1/2 28
...

...
...

...
...

...
...

Table 1 : Known values (or estimates) of coin(·) and colim(·) together with the
corresponding m and γm(·).
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Fractional covering index

Classical covering numbers:

N(K , L) = minimum number of translates of L needed to cover K .

N(K , L) = minimum number of translates of L by points in K needed to
cover K .

Weighted analogues: [Artstein-Avidan, Raz (2011)]

A set {(ωi , xi ) : ωi > 0, xi ∈ K}ni=1 of n ∈ N pairs is said to be an internal
weighted cover of K by L if for all x ∈ K ,

n∑
i=1

ωi1L+xi (x) ≥ 1.

Nω(K , L) = infimal
∑n

i=1 ωi over all internal weighted covers of K by L.
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If we remove the restriction of translating L by points in K , we obtain the
weighted covering number Nω(K , L) [Artstein-Avidan, Slomka (2013)].

Warning:

The quantity Nω(K , L) and the results obtained in [Artstein-Avidan, Raz
(2011)] work well when L is o-symmetric but not in general.

The weighted covering number Nω(K , L) works for all convex bodies. But
not much is known about it.
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Let Cd denote the subspace of d-dimensional o-symmetric convex bodies.

Definition 14

Let K ∈ Kd . We define the fractional covering index of K as

fcoin(K ) = inf
λ≤1/2

Nω(K , λK )

1− λ
.

Let K ∈ Cd . We define the internal fractional covering index of K as

fcoin(K ) = inf
λ≤1/2

Nω(K , λK )

1− λ
.

Clearly, fcoin(K ) ≤ fcoin(K ), for any K ∈ Cd and fcoin(K ) ≤ coin(K ), for
any K ∈ Kd .

The quantities fcoinλ(K ), fcoinλ(K ), fcolim(K ) and fcolim(K ) can be
defined analogously.

Muhammad Ali Khan (UCalgary) Quantitative covering of convex bodies 21 / 23



Theorem 15

Let K ∈ Cd . If for all 0 < λ < 1, Nω(K , λK ) = N(K , λK ), then for any
L ∈ Cd0 , d0 ∈ N the body K ⊕ L is tightly covered.

Theorem 16

Let K ∈ Kd . If K is tightly covered then for all 0 < λ < 1,
Nω(K , λK ) = N(K , λK ).

Corollary 17

For any 0 < λ < 1 and d ∈ N we have Nω(`, λ`) = N(`, λ`) and
Nω(Cd , λCd) = N(Cd , λCd) and so

fcoin(`) = coin(`) = 4,

fcoin(Cd) = coin(Cd) = 2d+1.
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Theorem 18

Let Ed = L1 ⊕ · · · ⊕ Ln be a decomposition of Ed into the direct vector
sum of its linear subspaces Li and let Ki ⊆ Li be convex bodies, then

fcoin(K1 ⊕ · · · ⊕ Kn) ≤ inf
λ≤ 1

2

∏n
i=1 Nω(Ki , λKi )

1− λ
<

n∏
i=1

fcoin(Ki ). (3)

and if K ′i s are o-symmetric,

fcoin(K1 ⊕ · · · ⊕ Kn) = inf
λ= 1

2

∏n
i=1 Nω(Ki , λKi )

1− λ
<

n∏
i=1

fcoin(Ki ). (4)

Relation (4), follows from

Nω(K1 ⊕ K2, λ(K1 ⊕ K2)) = Nω(K1, λK1)Nω(K2, λK2).

A detailed treatment of weighted covering numbers and fractional covering
indices appears in our paper:

K. Bezdek and M. A. Khan, On fractional coverings, (forthcoming).
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