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    ABSTRACT. In each of the normed division

algebras over the real field IR—namely, IR itself,

the complex numbers CI , the quaternions IH, and

the octonions OI —certain elements can be char-

acterized as integers. An integer of norm 1 is

a unit. In a basic system of integers the units

span a 1-, 2-, 4-, or 8-dimensional lattice, the

points of which are the vertices of a regular or

uniform Euclidean honeycomb. A modular group

is a group of linear fractional transformations

whose coefficients are integers in some basic

system. In the case of the octonions, which

have a nonassociative multiplication, such trans-

formations form a modular loop. Each real,

complex, or quaternionic modular group can be

identified with a subgroup of a Coxeter group

operating in hyperbolic space of 2, 3, or 5

dimensions.



Linear Fractional Transformations

When each point of a projective line FP  over a field1

F is identified uniquely either with an element x of F

4or with the extended value , a projectivity (i.e., a
permutation of the points of FP  that preserves cross1

ratios) can be expressed as a linear fractional trans-

4formation of the extended field F c { }, defined for
''four given field elements a, b, c, d (ad––bc == 0) by

ax+c
x ))))) ,{v

bx+d

4 4 4 4''with ––d/b  and a/b if b == 0 and with {v {v {v
if b == 0. Such mappings can also be represented
by 2 2 invertible matrices over F, constituting theV

projective general linear 2 group PGL (F).



The Hyperbolic Plane

The complex projective line CI P  with one point fixed,1

represented in IR  by the familiar Argand diagram,2

provides a conformal model for the hyperbolic plane
H . Points in the “upper half-plane” Im z > 0 are the2

ordinary points of H , and the real axis represents2

the absolute circle. The isometry group of H  is the2

projective pseudo-orthogonal 2,1 group PO , isomorphic
to the group of linear fractional transformations

4 4++ ,,@ A : CI c { } CI c { }v

''with A real and det A == 0, i.e., the (real) projective

2 2,1general linear group PGL . The subgroup P O  of+

direct isometries is isomorphic to the (real) projective
special linear 2 group PSL  (with det A > 0).



Modular Transformations

The set of 2 2 matrices A over the rational integersV

±ZZ with det A == 1 forms the unit linear 2 group SL (ZZ).)

The subgroup of matrices A with det A == 1 is the
special linear 2 group SL (ZZ). The corresponding group

2 ++ ,,PSL (ZZ) of linear fractional transformations @ A  is the
(rational) modular group 2, with PSL (ZZ) being the)

extended modular group.

Felix Klein showed in 1879 (cf. Poincaré 1882) that
the modular group is isomorphic to the rotation group

4of the regular hyperbolic tessellation {3, }. This
is the direct subgroup of the paracompact Coxeter

4group [3, ]:

4�2PSL (ZZ)  [3, ] .+







Hyperbolic 3-Space

The absolute (n––1)-sphere of hyperbolic n-space Hn

has the geometry of inversive (n––1)-space I . Forn––1

n,1n > 1 the group PO  of isometries of H  is isomor-n

phic to the group of circularities (homographies and
antihomographies) of I . When n == 2, this is then––1

�2 2group PGL   PGL (IR) of linear fractional transfor-

++ ,,mations @ A  with A real. When n == 3, it is the group

2PGL (CI ) of linear fractional transformations

4 4++ ,,@ A : CI c { } CI c { }v

with A complex, i.e., the group of projectivities of the
complex projective line CI P .1



Quadratic Integers

''For any square-free rational integer d == 1, the
quadratic field o o QI ( ) has elements r+s , where r'd'd
and s are rational. The conjugate o of a == r+s  is'd

oã == r–– s , its 'd trace tr a is a+ã == 2r, and its norm
N(a) is aã == r –– s d. The elements a with both tr a2 2

and N(a) in ZZ are quadratic integers and constitute
an integral domain, a two-dimensional algebra ZZ (d)2

over ZZ, whose invertible elements, or units, have

±norm 1.

For d > 0 the elements of ZZ (d) are real and there2

are infinitely many units. When d < 0, ZZ (d) has both2

real and imaginary elements, the conjugate of z is
its complex conjugate z), tr z == 2 Re z, N(z) == |z| ,2

±and (with two exceptions) the only units are 1.



The Gaussian Integers

0 1 0Complex numbers of the form g +g i, where g  and

o1g  are rational integers and i == , belong to the'––''1
ring GI  == ZZ[i] of Gaussian integers. There are four

± ±units in all: 1 and i. When the complex field CI  is
regarded as a two-dimensional vector space over IR,
the Gaussian integers constitute a two-dimensional

2lattice C  spanned by the units 1 and i. The points

2of C  are the vertices of a regular tessellation {4, 4}
of the Euclidean plane.





The Gaussian Modular Group

Just as restricting the coefficients of linear fractional

++ ,,transformations @ A  to rational integers defines the

2rational modular group PSL (ZZ), so restricting them
to Gaussian integers defines the Gaussian modular
group 2 PSL (GI ). This group was first described by
Émile Picard in 1884 and is commonly known as the
“Picard group.”

2In 1897 Fricke and Klein identified PSL (GI ) with a
subgroup of the rotation group of the hyperbolic
honeycomb {3, 4, 4} (cf. Magnus 1974). Schulte
and Weiss (1994) showed that it is a subgroup of
index 2 in [3, 4, 4] , and Monson and Weiss (1995)+

exhibited it as a subgroup of index 2 in the hyper-

4 4compact Coxeter group [ , 3, 3, ].



The Eisenstein Integers

0 1 0Complex numbers of the form e +e ù, where e  and

o1 2 2e  are rational integers and ù == –– + , belong'––''3/ /1 1

to the ring IE == ZZ[ù] of Eisenstein integers. There

± ± ±are six units: 1, ù, ù . When the complex field2

CI  is regarded as a two-dimensional vector space over
IR, the Eisenstein integers constitute a two-dimen-

2sional lattice A  spanned by the units 1 and ù. The

2points of A  are the vertices of a regular tessellation
{3, 6} of the Euclidean plane.





The Eisenstein Modular Group

Luigi Bianchi (1891, 1892) showed that if D is an
imaginary quadratic integral domain, the group

2PSL (D) acts discontinuously on hyperbolic 3-space.
Though Fricke and Klein applied this to the Gaussian
integers GI  == ZZ[i], the Eisenstein integers IE == ZZ[ù]
were generally ignored.

It was not until 1994 that Schulte and Weiss (cf.
Monson & Weiss 1995, 1997) related the Eisenstein
modular group 2 PSL (IE) to the honeycomb {3, 3, 6},

2showing that PSL (IE) is isomorphic to a subgroup of
the rotation group [3, 3, 6] .+



Coxeter Groups and Subgroups

The ring ZZ of rational integers can be identified with

1 ±the points of a lattice C  spanned by the units 1,

4the vertices of a regular partition { }. The modular

2group PSL (ZZ) is isomorphic to the rotation group

4 4[3, ]  of the regular hyperbolic tessellation {3, }.+

Similarly, the rings GI  and IE of Gaussian and Eisen-

2 2stein integers correspond to lattices C  and A , whose
points are the vertices of the regular tessellations
{4, 4} and {3, 6}. As shown by Johnson and Weiss
(1999), the respective modular groups are isomorphic
to “ionic” subgroups of hyperbolic Coxeter groups:

�2PSL (GI )  [3, 4, 1 , 4] ,+ +

�2PSL (IE)  [(3, 3) , 6, 1 ].+ +



Quaternions and Hyperbolic 5-Space

Theodor Vahlen (1902) showed that homographies
of inversive (n––1)-space I  can be representedn––1

by linear fractional transformations over a Clifford
algebra of dimension 2  (cf. Ahlfors 1985). Then––2

cases n == 2, 3, and 4 correspond to the real field
IR, the complex field CI , and the division ring IH of
quaternions.

John Wilker (1993) showed how a homography of I ,4

or a direct isometry of H , is represented by a linear5

++ ,,fractional transformation @ A  determined by a 2 2V

invertible matrix over IH. Thus the special projective

5,1pseudo-orthogonal group P O  is isomorphic to the+

2projective special linear group PSL (IH).



The Hamilton Integers

William Rowan Hamilton, who discovered the quater-
nions in 1843, later investigated the ring ZZ[i, j] of
quaternionic integers

0 1 2 3g == g +g i+g j+g k,

where the g’s are rational integers. Lipschitz (1886)
devoted a whole book to this system, which I denote
by IHam and call the Hamilton integers. The ring IHam
has eight invertible elements, or units:

± ± ± ±1, i, j, k.



The Hurwitz Integers

In 1896 Adolf Hurwitz described the ring ZZ[u, v] of
quaternionic integers

0 1 2 3h == h +h u+h v+h w,

where the h’s are rational integers and where

2 2 2 2 2 2 2 2u == ––––i–––j+–k  and  v == –+–i–––j–––k,1 1 1 1 1 1 1 1

with w == (uv) . This system will be denoted by––1

IHur and called the Hurwitz integers. The ring IHur
has 24 units, consisting of the eight Hamilton units
and 16 others of the type

2 2 2 2± ± ± ±– –i –j –k.1 1 1 1



The Hybrid Integers

Still another system of quaternionic integers is the
ring ZZ[ù, j] of quaternions

0 1 2 3e == e +e ù+e j+e ùj,

where the e’s are rational integers and where

2 2 2 2o où == –––+– i  and  ùj == –––j+– k.'3'31 1 1 1

This system will be denoted by IHyb and called the
hybrid integers. The ring IHyb has 12 units:

± ± ± ± ± ±1, ù, ù , j, ùj, ù j.2 2



Lattices and Honeycombs

When IH is taken as a four-dimensional vector space
over IR, each of the rings of integral quaternions
constitutes a four-dimensional lattice spanned by the
units.

4For the Hamilton integers points of the lattice C  are
vertices of a regular honeycomb {4, 3, 3, 4} of E .4

4For the Hurwitz integers points of the lattice D , which

4contains C  as a sublattice, are vertices of a regular
honeycomb {3, 3, 4, 3} of E .4

2 2For the hybrid integers points of the lattice A rA
are vertices of a uniform honeycomb {3, 6}×{3, 6} 
of E , the product of two regular tessellations of E .4 2



Quaternionic Modular Groups

When the coefficients of a linear fractional transfor-

++ ,,mation @ A  are restricted to elements of a ring of
integral quaternions, we have one of the quaternionic
modular groups 2 2 2 PSL (IHam), PSL (IHur), or PSL (IHyb).
These groups were investigated by Johnson and Weiss
(1999). Each of them is a subgroup (or an extension
of a subgroup) of a paracompact or hypercompact
Coxeter group operating in H :5

�2PSL (IHam)  [3, 4, (3, 3) , 4] ,ª +

�2PSL (IHur)   [(3, 3, 3) , 4, 3 ],+ +

�2PSL (IHyb)  4[1 , 6, (3, 3, 3, 3) , 6, 1 ].+ + +



The Octonions

The division algebra OI  of octonions was discovered
by John Graves in 1843 and rediscovered by Arthur
Cayley in 1845. It constitutes an eight-dimensional
vector space over IR, and (like IR, CI , and IH) has a
multiplicative norm. Whereas both IR and CI  are
fields and IH is a skew-field, multiplication in OI  is
neither commutative nor associative. The nonzero
octonions form a multiplicative Moufang loop GM(OI ).



Basic Systems of Integers

The notion of integer can be applied to any normed
division algebra. Leonard Dickson (1923) proposed
criteria for a set of complex, quaternionic, or octo-
nionic integers. Our theory requires a basic system
of integers to have the following properties:

(1) the trace and the norm of each element are
rational integers;

(2) the elements form a subring of CI , IH, or OI ,
with a set of units closed under multiplication;

(3) when CI , IH, or OI  is taken as a vector space
over IR, the elements are the points of a two-,
four-, or eight-dimensional lattice spanned by
the units.



What Are the Basic Systems?

The only basic system of real integers is the ring ZZ
of rational integers, with two units. The rings GI
and IE of Gaussian and Eisenstein integers, the only
domains of quadratic integers with both real and
imaginary units (four for GI , six for IE), are the two
basic systems of complex integers.

Using results of Du Val (1964), Johnson and Weiss
(1999) showed that the units of a basic system of
integral quaternions must form a binary dihedral

2 3 4group 2D  or 2D  or the binary tetrahedral group 2A
and hence that the only basic systems are the rings
IHam (8 units), IHyb (12 units), and IHur (24 units).



Integral Octonions (A)

Conway and Smith (2003) investigated rings of real,
complex, quaternionic, and octonionic integers, which
fall into four distinct families. There are just four
basic systems of integral octonions (Johnson 2013;
cf. Boddington & Rumynin 2007; Curtis 2007).

To the systems G  == ZZ (2 units), G  == GI  (4 units),1 2

and G  == IHam (8 units) we can add the system4

G  == OI cg of 8 Cayley–Graves integers (or “Gravesian

8octaves”) with 16 units spanning a lattice C , points
of which are the vertices of a regular honeycomb
{4, 3 , 4} of E .6 8



Integral Octonions (B)

Along with systems E  == IE (6 units) and E  == IHyb2 4

(12 units) we have the system E  == OI ce of 8 compound
Eisenstein integers (or “Eisensteinian octaves”) with

2 2 2 2 224 units spanning a lattice 4A  == A rA rA rA ,
points of which are the vertices of a uniform honey-
comb {3, 6} , the rectangular product of four regular4

tessellations of E .2

Two systems H  == IHur (24 units) can be combined4

to produce the system H  == OI ch of 8 coupled Hurwitz
integers (or “Hurwitzian octaves”) with 48 units that

4 4 4span a lattice 2D  == D rD , points of which are the
vertices of a uniform honeycomb {3, 3, 4, 3} , the2

rectangular product of two regular honeycombs of E .4



Integral Octonions (C)

Dickson (1923) showed that certain sets of octonions

2having coordinates in ZZ or ZZ+  form a system of/1

octonionic integers. In fact, he obtained three such
systems. Coxeter (1946) found that there are in all
seven of these systems, one corresponding to each

1 7of the seven unit octonions e , . . . , e .

Each system D  == OI cd of 8 Coxeter–Dickson integers
(or “Dicksonian octaves”) has 240 units spanning a

8lattice E , points of which are the vertices of Thorold

21 8Gosset’s uniform honeycomb 5 . The lattice E  con-

8 2 4tains C , 4A , and 2D  as sublattices, and the ring
OI cd contains OI cg, OI ce, and OI ch as subrings.



Octonionic Modular Loops

Rings of octonionic integers cannot be used to define
modular groups. First, the division algebra OI  is non-
associative, satisfying only the weaker alternative
laws (aa)b == a(ab) and (ab)b == a(bb). Second, the
connection between linear fractional transformations
and hyperbolic geometry runs through the family of
Clifford algebras, including IR, CI , and IH but not OI .

Though not associative, invertible 2 2 matrices overV

one of the basic systems of octonionic integers form
a special Moufang loop 2 2 2 SM (OI cg), SM (OI ce), SM (OI ch),

2 ±or SM (OI cd). Identifying the matrices A, we obtain
an octonionic modular loop 2 2 PSM (OI cg), PSM (OI ce),

2 2PSM (OI ch), or PSM (OI cd).



Summary

The ten basic systems of real, complex, quaternionic,
or octonionic integers fall into four families:

G  == ZZ, G  == GI , G  == IHam, G  == OI cg,1 2 4 8

E  == IE, E  == IHyb, E  == OI ce,2 4 8

H  == IHur, H  == OI ch,4 8

D  == OI cd.8

The elements of each basic system are the points of
a lattice in E , E , E , or E . The real, complex, and1 2 4 8

quaternionic systems define modular groups related
to Coxeter groups operating in H , H , or H . The2 3 5

four octonionic systems define modular loops.
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