
Colorings, monodromy, and impossible
triangulations

Ivan Izmestiev

FU Berlin

Geometry and Symmetry
Veszprém, June 29 – July 3, 2015



Impossible triangulations

Theorem
If a triangulation of S2 has exactly two vertices of odd degree,
then these are not adjacent.

By contrast, one may have:

▸ Two non-adjacent or more than two adjacent odd vertices.

▸ Two adjacent on the torus and on the projective plane.
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Reduction to even triangulations of polygons

First proof.
Assume such a triangulation exists.
Remove the edge joining the odd vertices
(and the adjacent triangles). Get a square,
triangulated with all vertices of even degree.

Thus, Theorem⇔ the square has no even triangulation.

Lemma
An n-gon has a triangulation with all vertices of even degree⇔
n ≡ 0(mod 3).

no no
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Even triangulations and colorings

Lemma
An n-gon has a triangulation with all vertices of even degree⇔
n ≡ 0(mod 3).

Proof.
An even triangulation can be vertex-colored in 3 colors:
color one triangle; this extends uniquely along any path;
extensions along different paths don’t contradict,
due to the even degrees and to the simply-connectedness.
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Even degrees⇒ colors of the boundary vertices repeat
cyclically 1→ 2→ 3→ 1→ ⋯. Hence n is divisible by 3.



A generalization

Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a
certain local pattern. Number of colors needed:

k 2 3 4 5
colors 3 4 6 12

(Can you guess where do these numbers come from?)

But the proof will look nicer in a different language...
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Color or cover
Given: a triangulated surface (with any number of odd vertices).

▸ Choose a base triangle and color its vertices arbitrarily.
▸ Extend the coloring along every path.
▸ Some paths can contradict each other.

Instead of “putting a new layer of paint”, create a new layer of
triangles and color them as needed.
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Compare: extending a holomorphic function f ∶U → C along
different paths can produce different values at the same point.
These “branches” of f form the Riemann surface of f .
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Coloring monodromy

Definition
Let M be a triangulated surface, ∆0 a triangle in M, and
a1, . . . ,an vertices of odd degree. The coloring monodromy

π1(M ∖ {a1, . . . ,an},∆0) → Sym(∆0) ≅ Sym3

is a group homomorphism that sends every path starting and
ending at ∆0 to the corresponding vertex re-coloring of ∆0.

Example
In the 7-vertex triangulation of the
torus all vertices have degree 6.
The coloring monodromy

Z2
≅ π1(M) → Sym3

permutes the colors in a 3-cycle.
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Two odd-degree vertices: second proof
Assume we have a triangulation of S2 with only two odd degree
vertices a,b, which are adjacent.

Since π1(S2
∖ {a,b}) ≅ Z, the coloring monodromy

π1(S2
∖ {a,b}) → Sym3

has a cyclic subgroup of Sym3 as its image.

On the other hand, going around a and going around b
permutes the colors by two different transpositions.
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Hence the image must be the whole Sym3. Contradiction.
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References

The coloring monodromy (under the name “group of
projectivities”) was introduced in

[Joswig’02] Projectivities in simplicial complexes and colorings
of simple polytopes.

The associated branched cover was introduced and studied in

[I.-Joswig’03] Branched coverings, triangulations, and
3-manifolds.

(the focus was on triangulations of S3 with the edges of odd
degrees forming a knot).
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Two vertices of degree /≡ 0(mod k) cannot be adjacent

For k = 3,4,5 let P = tetrahedron, octahedron, icosahedron.

Match one of the faces of P with the base triangle of S2.

Rolling P along a closed path generates a symmetry of P.

2

1

4

2 3

1

2

4
1

3

3

4

Z2
≅ π1(S2

∖ {a,b}) → Sym(P) (∗)

Assume that a,b are adjacent and belong to the base triangle.

Then rolling around a and rolling around b produce two
non-commuting symmetries of P.

Hence the image of (∗) is non-commutative. Contradiction.
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The minimal colored cover
Definition
The minimal colored cover Σ̃ of a triangulated surface Σ:

{(∆, ϕ) ∣∆ ∈ Σ, ϕ∶Vert(∆) → {1,2,3}} / ∼

Two adjacent colored triangles are glued along their common
side if their colorings on that side agree.
This comes with a natural branched cover Σ̃→ Σ.

Example
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A universality property: if a colored surface
covers Σ, then it also covers Σ̃.

T //

��>>>>>>>> Σ̃
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The space of germs

Definition
Given two triangulated surfaces Σ,Σ′.
The space of germs G(Σ,Σ′) consists of triples

(∆,∆′, ϕ), ∆ ∈ Σ, ∆′ ∈ Σ′, ϕ∶Vert(∆) → Vert(∆′)

Each triple is a triangle; two triangles are glued side-to-side if
they are obtained by “rolling Σ over Σ′”.

Naturally, G(Σ,Σ′) covers Σ and Σ′.

The universality property:
if a surface covers both Σ and Σ′,
then it also covers G(Σ,Σ′).

T
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G(Σ,Σ′)
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Constructing a regular map

The space G(Σ,Σ′) inherits symmetries from both Σ and Σ′.
In particular, if Σ and Σ′ are vertex-transitive, then so is
G(Σ,Σ′).

Example
Each connected component of G(tetra,octa) is a regular map
of the type (3,12) with 4 ⋅ 8 ⋅ 3 = 96 faces. Hence it has 144
edges and 24 vertices, hence genus 13.
The group Sym(tetra) ×Sym(octa) acts on G(tetra,octa).
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Spherical cone-metrics and the developing map

Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

Geometric proof.
Replace each triangle by an equiangular spherical triangle with
the angle 2π

k . Get a spherical metric on S2 with cone
singularities: all except two are integer multiples of 2π.

The complement of the edge
between the exceptional vertices
develops onto S2 with standard metric.
The two sides of the slit go to
two different geodesics of length 2π

k
with the same endpoints. Contradiction.
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a
2π/k

2π/k



Spherical cone-metrics and the developing map

Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

Geometric proof.
Replace each triangle by an equiangular spherical triangle with
the angle 2π

k . Get a spherical metric on S2 with cone
singularities: all except two are integer multiples of 2π.

The complement of the edge
between the exceptional vertices
develops onto S2 with standard metric.
The two sides of the slit go to
two different geodesics of length 2π

k
with the same endpoints. Contradiction.

b

a
2π/k

2π/k



Spherical cone-metrics and the developing map

Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

Geometric proof.
Replace each triangle by an equiangular spherical triangle with
the angle 2π

k . Get a spherical metric on S2 with cone
singularities: all except two are integer multiples of 2π.

The complement of the edge
between the exceptional vertices
develops onto S2 with standard metric.
The two sides of the slit go to
two different geodesics of length 2π

k
with the same endpoints. Contradiction.

b

a
2π/k

2π/k



Impossible torus triangulations and non-toral graphs

Theorem (Jendrol’, Jukovic̆ ’72)
There is no triangulation of the torus with the vertex degrees
5,6, . . . ,6,7.

New proof: [I., Kusner, Rote, Springborn, Sullivan ’13].
Make every triangle equilateral euclidean. Obtain a euclidean
metric with two cone-singularities. Study its holonomy.

As a corollary, every graph with these vertex degrees is not
embeddable in the torus.
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