Colorings, monodromy, and impossible triangulations

Ivan Izmestiev

FU Berlin

Geometry and Symmetry

Veszprém, June 29 - July 3, 2015

Impossible triangulations

Theorem

If a triangulation of \mathbb{S}^2 has exactly two vertices of odd degree, then these are not adjacent.

Impossible triangulations

Theorem

If a triangulation of \mathbb{S}^2 has exactly two vertices of odd degree, then these are not adjacent.

By contrast, one may have:

► Two non-adjacent or more than two adjacent odd vertices.

Two adjacent on the torus and on the projective plane.

Reduction to even triangulations of polygons

First proof.

Assume such a triangulation exists.

Remove the edge joining the odd vertices (and the adjacent triangles). Get a square, triangulated with all vertices of even degree.

Thus, Theorem \Leftrightarrow the square has no even triangulation.

Reduction to even triangulations of polygons

First proof.

Assume such a triangulation exists.

Remove the edge joining the odd vertices (and the adjacent triangles). Get a square, triangulated with all vertices of even degree.

Thus, Theorem \Leftrightarrow the square has no even triangulation.

Lemma

An *n*-gon has a triangulation with all vertices of even degree \Leftrightarrow $n \equiv 0 \pmod{3}$.

no

Even triangulations and colorings

Lemma

An *n*-gon has a triangulation with all vertices of even degree \Leftrightarrow $n \equiv 0 \pmod{3}$.

Proof.

An even triangulation can be vertex-colored in 3 colors: color one triangle; this extends uniquely along any path; extensions along different paths don't contradict, due to the even degrees and to the simply-connectedness.

Even triangulations and colorings

Lemma

An *n*-gon has a triangulation with all vertices of even degree \Leftrightarrow $n \equiv 0 \pmod{3}$.

Proof.

An even triangulation can be vertex-colored in 3 colors: color one triangle; this extends uniquely along any path; extensions along different paths don't contradict, due to the even degrees and to the simply-connectedness.

Even degrees \Rightarrow colors of the boundary vertices repeat cyclically $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow \cdots$. Hence n is divisible by 3.

A generalization

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

A generalization

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a certain local pattern. Number of colors needed:

(Can you guess where do these numbers come from?)

A generalization

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a certain local pattern. Number of colors needed:

(Can you guess where do these numbers come from?)

But the proof will look nicer in a different language...

Given: a triangulated surface (with any number of odd vertices).

Given: a triangulated surface (with any number of odd vertices).

- Choose a base triangle and color its vertices arbitrarily.
- Extend the coloring along every path.
- Some paths can contradict each other.

Given: a triangulated surface (with any number of odd vertices).

- Choose a base triangle and color its vertices arbitrarily.
- Extend the coloring along every path.
- Some paths can contradict each other.

Instead of "putting a new layer of paint", create a new layer of triangles and color them as needed.

Given: a triangulated surface (with any number of odd vertices).

- Choose a base triangle and color its vertices arbitrarily.
- Extend the coloring along every path.
- Some paths can contradict each other.

Instead of "putting a new layer of paint", create a new layer of triangles and color them as needed.

Compare: extending a holomorphic function $f: U \to \mathbb{C}$ along different paths can produce different values at the same point. These "branches" of f form the Riemann surface of f.

Coloring monodromy

Definition

Let M be a triangulated surface, Δ_0 a triangle in M, and a_1, \ldots, a_n vertices of odd degree. The coloring monodromy

$$\pi_1(\textit{M} \smallsetminus \{\textit{a}_1, \ldots, \textit{a}_n\}, \Delta_0) \to \textit{Sym}(\Delta_0) \cong \textit{Sym}_3$$

is a group homomorphism that sends every path starting and ending at Δ_0 to the corresponding vertex re-coloring of Δ_0 .

Coloring monodromy

Definition

Let M be a triangulated surface, Δ_0 a triangle in M, and a_1, \ldots, a_n vertices of odd degree. The coloring monodromy

$$\pi_1(M \setminus \{a_1, \dots, a_n\}, \Delta_0) \to \operatorname{Sym}(\Delta_0) \cong \operatorname{Sym}_3$$

is a group homomorphism that sends every path starting and ending at Δ_0 to the corresponding vertex re-coloring of Δ_0 .

Example

In the 7-vertex triangulation of the torus all vertices have degree 6. The coloring monodromy

$$\mathbb{Z}^2 \cong \pi_1(M) \to \operatorname{\mathsf{Sym}}_3$$

permutes the colors in a 3-cycle.

Two odd-degree vertices: second proof

Assume we have a triangulation of \mathbb{S}^2 with only two odd degree vertices a, b, which are adjacent.

Two odd-degree vertices: second proof

Assume we have a triangulation of \mathbb{S}^2 with only two odd degree vertices a, b, which are adjacent.

Since $\pi_1(\mathbb{S}^2 \setminus \{a, b\}) \cong \mathbb{Z}$, the coloring monodromy

$$\pi_1(\mathbb{S}^2 \setminus \{a,b\}) \to \operatorname{Sym}_3$$

has a cyclic subgroup of Sym₃ as its image.

Two odd-degree vertices: second proof

Assume we have a triangulation of \mathbb{S}^2 with only two odd degree vertices a, b, which are adjacent.

Since $\pi_1(\mathbb{S}^2 \setminus \{a, b\}) \cong \mathbb{Z}$, the coloring monodromy

$$\pi_1(\mathbb{S}^2 \setminus \{a,b\}) \to \operatorname{Sym}_3$$

has a cyclic subgroup of Sym₃ as its image.

On the other hand, going around *a* and going around *b* permutes the colors by two different transpositions.

Hence the image must be the whole Sym₃. Contradiction.

References

The coloring monodromy (under the name "group of projectivities") was introduced in

[Joswig'02] Projectivities in simplicial complexes and colorings of simple polytopes.

References

The coloring monodromy (under the name "group of projectivities") was introduced in

[Joswig'02] Projectivities in simplicial complexes and colorings of simple polytopes.

The associated branched cover was introduced and studied in [I.-Joswig'03] Branched coverings, triangulations, and 3-manifolds.

(the focus was on triangulations of \mathbb{S}^3 with the edges of odd degrees forming a knot).

Two vertices of degree $\not\equiv 0 \pmod{k}$ cannot be adjacent

For k = 3, 4, 5 let P = tetrahedron, octahedron, icosahedron.

Match one of the faces of P with the base triangle of \mathbb{S}^2 .

Rolling P along a closed path generates a symmetry of P.

Two vertices of degree $\not\equiv 0 \pmod{k}$ cannot be adjacent

For k = 3, 4, 5 let P = tetrahedron, octahedron, icosahedron.

Match one of the faces of P with the base triangle of \mathbb{S}^2 .

Rolling P along a closed path generates a symmetry of P.

Assume that a, b are adjacent and belong to the base triangle.

Then rolling around *a* and rolling around *b* produce two non-commuting symmetries of *P*.

Hence the image of (*) is non-commutative. Contradiction.

The minimal colored cover

Definition

The minimal colored cover $\widetilde{\Sigma}$ of a triangulated surface Σ :

$$\{(\Delta, \varphi) \mid \Delta \in \Sigma, \varphi : Vert(\Delta) \rightarrow \{1, 2, 3\}\} / \sim$$

Two adjacent colored triangles are glued along their common side if their colorings on that side agree.

This comes with a natural branched cover $\widetilde{\Sigma} \to \Sigma$.

The minimal colored cover

Definition

The minimal colored cover $\widetilde{\Sigma}$ of a triangulated surface Σ :

$$\{(\Delta, \varphi) \mid \Delta \in \Sigma, \varphi : Vert(\Delta) \rightarrow \{1, 2, 3\}\} / \sim$$

Two adjacent colored triangles are glued along their common side if their colorings on that side agree.

This comes with a natural branched cover $\widetilde{\Sigma} \to \Sigma$.

Example

The minimal colored cover

Definition

The minimal colored cover $\widetilde{\Sigma}$ of a triangulated surface Σ :

$$\{(\Delta, \varphi) \mid \Delta \in \Sigma, \varphi : Vert(\Delta) \rightarrow \{1, 2, 3\}\} / \sim$$

Two adjacent colored triangles are glued along their common side if their colorings on that side agree.

This comes with a natural branched cover $\widetilde{\Sigma} \to \Sigma$.

Example

A universality property: if a colored surface covers Σ , then it also covers $\widetilde{\Sigma}$.

The space of germs

Definition

Given two triangulated surfaces Σ, Σ' .

The space of germs $G(\Sigma, \Sigma')$ consists of triples

$$(\Delta, \Delta', \varphi), \quad \Delta \in \Sigma, \quad \Delta' \in \Sigma', \quad \varphi : Vert(\Delta) \to Vert(\Delta')$$

Each triple is a triangle; two triangles are glued side-to-side if they are obtained by "rolling Σ over Σ ".

The space of germs

Definition

Given two triangulated surfaces Σ, Σ' . The space of germs $G(\Sigma, \Sigma')$ consists of triples

$$(\Delta, \Delta', \varphi), \quad \Delta \in \Sigma, \quad \Delta' \in \Sigma', \quad \varphi : \text{Vert}(\Delta) \to \text{Vert}(\Delta')$$

Each triple is a triangle; two triangles are glued side-to-side if they are obtained by "rolling Σ over Σ ".

Naturally, $G(\Sigma, \Sigma')$ covers Σ and Σ' .

The universality property: if a surface covers both Σ and Σ' , then it also covers $G(\Sigma, \Sigma')$.

Constructing a regular map

The space $G(\Sigma, \Sigma')$ inherits symmetries from both Σ and Σ' . In particular, if Σ and Σ' are vertex-transitive, then so is $G(\Sigma, \Sigma')$.

Constructing a regular map

The space $G(\Sigma, \Sigma')$ inherits symmetries from both Σ and Σ' . In particular, if Σ and Σ' are vertex-transitive, then so is $G(\Sigma, \Sigma')$.

Example

Each connected component of G(tetra, octa) is a regular map of the type (3,12) with $4 \cdot 8 \cdot 3 = 96$ faces. Hence it has 144 edges and 24 vertices, hence genus 13.

The group $Sym(tetra) \times Sym(octa)$ acts on G(tetra, octa).

Spherical cone-metrics and the developing map

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

Spherical cone-metrics and the developing map

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

Geometric proof.

Replace each triangle by an equiangular spherical triangle with the angle $\frac{2\pi}{k}$. Get a spherical metric on \mathbb{S}^2 with cone singularities: all except two are integer multiples of 2π .

Spherical cone-metrics and the developing map

Theorem

For any $k \in \{2,3,4,5\}$, if degrees of all but two vertices of a triangulation of \mathbb{S}^2 are divisible by k, then the exceptional vertices are not adjacent.

Geometric proof.

Replace each triangle by an equiangular spherical triangle with the angle $\frac{2\pi}{k}$. Get a spherical metric on \mathbb{S}^2 with cone singularities: all except two are integer multiples of 2π .

The complement of the edge between the exceptional vertices develops onto \mathbb{S}^2 with standard metric. The two sides of the slit go to two different geodesics of length $\frac{2\pi}{k}$ with the same endpoints. Contradiction.

Impossible torus triangulations and non-toral graphs

Theorem (Jendrol', Jukovič '72)

There is no triangulation of the torus with the vertex degrees $5, 6, \dots, 6, 7$.

Impossible torus triangulations and non-toral graphs

Theorem (Jendrol', Jukovič '72)

There is no triangulation of the torus with the vertex degrees $5, 6, \dots, 6, 7$.

New proof: [I., Kusner, Rote, Springborn, Sullivan '13]. Make every triangle equilateral euclidean. Obtain a euclidean metric with two cone-singularities. Study its holonomy.

Impossible torus triangulations and non-toral graphs

Theorem (Jendrol', Jukovič '72)

There is no triangulation of the torus with the vertex degrees $5, 6, \dots, 6, 7$.

New proof: [I., Kusner, Rote, Springborn, Sullivan '13]. Make every triangle equilateral euclidean. Obtain a euclidean metric with two cone-singularities. Study its holonomy.

As a corollary, every graph with these vertex degrees is not embeddable in the torus.

