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Parallelohedra

De�nition

Convex d-dimensional polytope P is called a parallelohedron if Rd

can be (face-to-face) tiled into parallel copies of P .

Two types of two-dimensional parallelohedra
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

A.Garber UTB

Five-dimensional Dirichlet-Voronoi parallelohedra



Parallelohedra Voronoi Delone Secondary cones

Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Parallelepiped and hexagonal prism with centrally symmetric base.
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Rhombic dodecahedron, elongated dodecahedron, and truncated
octahedron
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Four-dimensional parallelohedra

There are 52 four-dimensional parallelohedra. They were found by
Delone (1929) and Shtogrin (1973) in proportion 51 to 1.

24-cell is the ��rst� example of non-zonotopal parallelohedron.
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Five-dimensional parallelohedra

In 1976 Baranovskii and Ryshkov found 221 primitive
�ve-dimensional parallelohedra.

In 2000 Engel reported that he found 103769 combinatorially
di�erent �ve-dimensional parallelohedra.

But it appears, that he used subordination symbols to distinguish
them, and not all combinatorially di�erent parallelohedra were
listed.

In 2002 Engel and Grishukhin used Engel's list to found the last
222nd primitive parallelohedron in R5.
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Dirichlet-Voronoi polytopes

For arbitrary lattice Λ we can construct a parallelohedron
associated with it.

Take a polytope consists of points that are closer to a point O
of Λ than to any other lattice point.

This is the Dirichlet-Voronoi polytope of the lattice, and it
is a parallelohedron.

O
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Voronoi conjecture

Conjecture (Voronoi, 1909)

Every parallelohedron is a�ne equivalent to Dirichlet-Voronoi

polytope of some lattice Λ.

−→
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Partial results

The following partial results are are known:

local condition,
extension/contraction condition, global condition.

Voronoi in 1909 for primitive parallelohedra

Zhitomirskii in 1929 for 2-primitive parallelohedra

Erdahl in 1999 for space-�lling zonotopes

Ordine in 2005 for 3-irreducible parallelohedra

G., Gavrilyuk, and Magazinov in 2015 for parallehedra with
H1(Pπ,Q) generated by half-belts

Magazinov in 2015+ for Minkowski sums of parallelohedra and
segments
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Delone tiling

Delone tiling is the tiling with �empty spheres�.

A polytope P is in the Delone tiling Del(Λ) i� it is inscribed in an
empty sphere.

The Delone tiling is dual to the Voronoi tiling.
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From lattices to PQF

An a�ne transformation can take a lattice to Zd , but it changes
metrics from xtx to xtQx for some positive de�nite quadratic form
Q.

Task

Find all combinatorially di�erent Delone tilings of Zd .

De�nition

The Delone tiling Del(Zd ,Q) of the lattice Zd with respect to PQF
Q is the tiling of Zd with empty ellipsoids determined by Q
(spheres in the metric xtQx).
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Secondary cones

Let Sd ⊂ R
d(d+1)

2 denotes the cone of all PQF.

De�nition

The secondary cone of a Delone tiling D is the set of all PQFs Q
with Delone tiling equal to D.

SC(D) =
{
Q ∈ Sd |D = Del(Zd ,Q)

}

Theorem (Voronoi, 1909)

SC(D) is a convex polyhedron in Sd .
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Secondary cones II

Theorem (Voronoi, 1909)

The set of closures all secondary cones gives a face-to-face tiling of

the closure of Sd (that is the cone of positive semide�nite

quadratic forms).

Full-dimensional secondary cones correspond to Delone
triangulations
One-dimensional secondary cones are called extreme rays

Lemma

Two Delone tilings D and D′ are a�nely equivalent i� there is a

matrix A ∈ GLd(Z) such that

A(SC(D)) = SC(D′).
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Secondary cones in dimension 2

Any PQF Q =

(
a b
b c

)
can be represented

by a point in a cone over open disc.
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Secondary cones in dimension 2

We will �nd the secondary cone of Delone tri-
angulation on the right.
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Secondary cones in dimension 2

Each pair of adjacent triangles de�nes one linear
inequality for secondary cone. For blue pair the
inequality is b < 0.
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Secondary cones in dimension 2

The green pair of triangles gives us inequality
b + c > 0.
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Secondary cones in dimension 2

The red pair gives us inequality a + b > 0.
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Secondary cones in dimension 2

The secondary cone is a cone over trian-

gle with vertices

(
1 0
0 0

)
,

(
0 0
0 1

)
, and(

1 −1
−1 1

)
.
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Secondary cones in dimension 2

Similarly we can construct secondary cones for
other triangulations.
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Secondary cones in dimension 2

Triangulations corresponding to adjacent sec-
ondary cones di�er by a (bi-stellar) �ip.
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Secondary cones in dimension 2
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Secondary cones in dimension 2

Cones of smaller dimensions are secondary cones
of non-generic Delone decompositions.
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Algorithm

We start from all the secondary cones of Delone triangulations.
These are the cones of codimension 0.

Compute all facets of each cone and pick those which are
non-equivalent. These are the cones of codimension 1.

Repeat until we get di�erent extreme rays.

To check GLd(Z)-equivalence of secondary cones we use isom by
Bernd Souvignier.
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Results

Theorem (Dutour-Sikiri�c, G., Sch�urmann, Waldmann, 2015+)

There are 110244 a�ne types of lattice Delone subdivisions in

dimension 5.

Three independent implementations: Haskell code, polyhedral
package of GAP, and C++ code scc v.2.0 (secondary cone cruiser).

Additionally, all these classes generate combinatorially di�erent
Dirichlet-Voronoi parallelohedra.
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Happy Birthday,
Egon and K�aroly!
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