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Happy birthday Károly and Egon!
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Definition

A convex body K ⊂ Rd slides freely in rBd if for each boundary
point p of rBd , there is a translate K + v of K with p ∈ K + v
and K + v ⊂ rBd .

rBd

K + v

p ∈ rSd−1

For a convex body K ⊂ Rd , the following are equivalent:

1 K slides freely in rBd .

2 K is a Minkowski summand of rBd .

3 K is an r -hyperconvex (r -spindle convex) body, that is,
together with any two points x , y ∈ K , the intersection of all
radius r closed balls containing x and y is also in K .
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The concept of hyperconvexity or spindle convexity (other
names are also used in the literature) goes back a long way,
for example to Mayer (1935), and possible even further.

It seems that the idea appeared in various settings and guises
in the literature so it is difficult to tell exactly when it started.

Recent overviews of the topic can be found, for example, in
the papers by Bezdek, Lángi, Naszódi and Papez (2007), and
in Kupitz, Martini and Perles (2010).

From among the many valuable contributions to this topic, I
would like to single out the following paper which served us as
a motivation

[1] Károly Bezdek, Zsolt Lángi, Márton Naszódi, and Peter Papez,
Ball-polyhedra, Discrete Comput. Geom. 38 (2007), no. 2, 201–230.
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Let x1, . . . xm ∈ Rd . The intersection of all radius r closed
balls containing x1, . . . , xm is denoted by [x1, . . . , xm]r
(r -hyperconvex or r -spindle convex hull).

Note that if K slides freely in rBd and x1, . . . , xm ∈ K , then
[x1, . . . , xm]r ⊆ K .

A ball-polytope or radius r is the r -hyperconvex hull of a finite
set of points in Rd .

The intersection of a finite family of circular discs of radius r
in R2 is called disc-polygon of radius r .

A convex disc K that slides freely in a circle of radius r has a
C 2
++ smooth boundary if ∂K is C 2 and the curvature
κ(x) > 1/r for all x ∈ ∂K .

The following asymptotic formulas are analogues of the
corresponding results of L. Fejes Tóth (1953) and of McClure
and Vitale (1975) about linearly convex discs.
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Theorem (F.F., V. V́ıgh (2012) [4])

Let K be a convex disc that slides freely in a circle or radius r and
has C 2

++ smooth boundary. Then the following hold as n→∞,

δ`(K ,K `
n) ∼ 1

24

(∫
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(
κ2(s)− 1

r2

) 1
3

ds

)3

· 1

n2
,

δa(K ,K a
n ) ∼ 1

12

(∫
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(
κ(s)− 1

r

) 1
3

ds

)3

· 1

n2
,

δH(K ,KH
n ) ∼ 1

8

(∫
∂K

(
κ(s)− 1

r

) 1
2

ds

)2

· 1

n2
,

where K `
n,K

a
n , and KH

n denote disc-polygons of radius r with at
most n sides inscribed in K that are closest to K with respect to
perimeter-deviation, area-deviation, and Hausdorff-metric,
respectively.

We proved similar formulas for the circumscribed cases as well.
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Dowker’s theorems and their extensions

Confirming a conjecure of Kershner, Dowker proved in 1944
that the maximum area of n-gons inscribed in a convex disc K
is a concave function of n, and the minimum area of n-gons
circumscribed about K is a convex function of n.

L. Fejes Tóth (1955), Molnár (1955), and Eggleston (1957)
observed independently of each other that Dowker’s results
are also true for perimeter.

The theorems of Dowker and their extensions for the
perimeter hold also on the sphere and in the hyperbolic plane.

This was shown by Molnár in 1955 with the exception of the
case of perimeter of circumscribed polygons on the sphere.
This last case was settled by L. Fejes Tóth in 1958.

The statements of the following theorem were proved by
Bezdek, Lángi, Naszódi and Papez in 2007 for the special case
when K is a closed circular disc of radius r < 1.
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A Dowker-type result

Let ai (n) and pi (n) denote the maximum area and maximum
perimeter of convex disc-polygons (of radius r) with at most n
vertices contained in K .

Let ac(n) and pc(n) denote the minimum area and minimum
perimeter of convex disc-polygons (of radius r) with at most n
vertices containing K .

Theorem (G. Fejes Tóth, F.F. (2015) [2])

We have, for n ≥ 4,

i) ac(n − 1) + ac(n + 1) ≥ 2ac(n),

ii) pc(n − 1) + pc(n + 1) ≥ 2pc(n),

iii) ai (n − 1) + ai (n + 1) ≤ 2ai (n),

iv) pi (n − 1) + pi (n + 1) ≤ 2pi (n).

We also proved that (i)–(iv) hold in the hyperbolic plane, and (i),
(iii), (iv) hold on the sphere.
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Eggleston (1957) proved that the minimum area deviation and
the minimum perimeter deviation of a convex n-gon from a
convex disc K are concave functions of n.

It is unknown whether the same holds for disc-n-gons of
radius r and r -hyperconvex discs.

To answer this question seems to be difficult. Here is one the
reasons why.

Eggleston (1957) proved that for a convex disc K among all
convex n-gons the one closest to K in the sense of perimeter
deviation is always inscribed in K .

Direct computations show that if K is the circle of radius 0.9
and n = 5, then the best approximating disc-5-gon in the
sense of perimeter deviation is neither inscribed in nor
circumscribed about K .
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A reverse isoperimetric inequality

K. Bezdek conjectured that among convex bodies of a given
surface area that slide freely in a ball of radius r , the r -spindle is
the unique body that has minimal volume.

Theorem (F.F.,Á. Kurusa, V. V́ıgh (2015) [1])

The r-spindle has minimal area among discs of equal perimeter
that slide freely in a circle of radius r .

We note that the argument of the proof of the above theorem does
not yield that the uniqueness of the r -spindle.

Conjecture (F.F.,Á. Kurusa, V. V́ıgh (2015) [1])

If the volume of a convex body K that slides freely in a ball of
radius r is sufficiently close to that of an r-spindle K ′ of the same
surface area, then K is close to K ′ in the Hausdorff metric of
compact sets.
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A Blaschke–Santaló type theorem

Let the convex body K ⊂ Rd slide freely in a ball or radius r .
The r -hyperconvex dual K r of K is the collection of the
centres of all closed balls of radius r that contain K .

We define the r -hyperconvex volume product of K as

P(K ) := Vol(K ) Vol(K r ).

Theorem (F.F.,Á. Kurusa, V. V́ıgh (2015) [1])

If K ⊂ Rd slides freely in a ball of radius r , then

P(K ) ≤ P
( r

2
Bd
)
.

Equality holds if and only if K = r/2 · Bd + z for some z ∈ Rd .
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Stability of the volume product inequality

Theorem (F.F.,Á. Kurusa, V. V́ıgh (2015) [1])

Let r > 0, then there exist constants cd ,r > 0 and εd ,r ∈ (0, 12)
depending only on d and r , and a monotonically decreasing
positive real function µ(ε) with µ(ε)→ 0 as ε→ 0 such that a
convex body K ⊂ Rd that slides freely in a ball of radius r satisfies

P(K ) ≥ (1− ε)P
( r

2
Bd
)

for some ε ∈ [0, εd ,r ] if and only if there exists a vector z ∈ Rd

such that
δH

(
K ,

r

2
Bd + z

)
≤ cd ,rµ(ε),

where δH( · , · ) denotes the Hausdorff distance of compact sets.
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Uniform random approximations

Let K ⊂ Rd be a convex body that slides freely in rBd .

Let x1, . . . , xn be a sample of i.i.d. random points from K
chosen according to the uniform probability distribution.

K r
n := [x1, . . . , xn]r is a (uniform) random ball-polytope of

radius r in K .

The boundary ∂K is C 2
++ smooth if it is C 2 and in any

x ∈ ∂K all principal curvatures are strictly larger than 1/r .

The following theorem implies, in the limit as r →∞, the
corresponding asymptotic formulas of Rényi and Sulanke
(1963, 1964) for convex discs K whose boundary is C 2

+ (C 5
+)

smooth.
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Theorem (F.F., P. Kevei, V. V́ıgh (2014) [3])

If the convex disc K ⊂ R2 has C 2
++ boundary and slides freely in a

circle of radius r , then

lim
n→∞

E(f0(K r
n)) · n−1/3 = 3
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2

3A(K )
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5

3
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r
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If, in additon, ∂K is C 5
++ smooth, then

lim
n→∞

E(P(K )− P(K r
n)) · n2/3

=
(12A(K ))2/3

36
Γ

(
2

3

)∫
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(
κ(x)− 1

r

)1/3(
3κ(x) +

1

r

)
dx .
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The case of the unit disc

Theorem (F.F., P. Kevei, V. V́ıgh (2014) [3])

If K is the unit radius closed circular disc, the following holds.

lim
n→∞

E(f0(K 1
n )) =

π2

2
,

and

lim
n→∞

E (A(K \ K 1
n )) · n =

π2

2
.
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Thank you for your attention.
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