## On the Volume of Boolean Expressions of Large Congruent Balls

## Balázs Csikós



Eötvös Loránd University \& Alfréd Rényi Institute of Mathematics Budapest

Geometry and Symmetry<br>29 June - 3 July 2O15, Veszprém, HunGary<br>Dedicated to Károly Bezdek and EGOn Schulte on the occasion of their 6Oth Birthdays

## Motivations

## Kneser-Poulsen Conjecture (1954-55)

Suppose that for the points $\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$ and $\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}$ in $\mathbb{R}^{d}$,

$$
\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\| \geq\left\|\mathbf{q}_{i}-\mathbf{q}_{j}\right\| \quad \forall 1 \leq i<j \leq N
$$

Do these inequalities imply for the inequality

$$
\operatorname{Vol}_{d}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r\right)\right) \geq \operatorname{Vol}_{d}\left(\bigcup_{i=1}^{N} B\left(\mathbf{q}_{i}, r\right)\right)
$$

for $r>0$ ?


## Theorem (K. Bezdek, R. Connelly)

If there exist continuous curves $\gamma_{i}:[0,1] \rightarrow \mathbb{R}^{d+2}$ such that $\gamma_{i}(0)=\mathbf{p}_{i}$, $\gamma_{i}(1)=\mathbf{q}_{i}$, and $\left\|\gamma_{i}-\gamma_{j}\right\|$ is a decreasing function for all $1 \leq i<j \leq N$, then

$$
\operatorname{Vol}_{d}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r\right)\right) \geq \operatorname{Vol}_{d}\left(\bigcup_{i=1}^{N} B\left(\mathbf{q}_{i}, r\right)\right)
$$

and

$$
\operatorname{Vol}_{d}\left(\bigcap_{i=1}^{N} B\left(\mathbf{p}_{i}, r\right)\right) \leq \operatorname{Vol}_{d}\left(\bigcap_{i=1}^{N} B\left(\mathbf{q}_{i}, r\right)\right)
$$

for $r>0$.

## Leapfrog Lemma

For any two systems of points $\mathbf{p}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$ and $\mathbf{q}=\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right)$ in $\mathbb{R}^{d}$, there exist continuous curves $\gamma_{i}:[0,1] \rightarrow \mathbb{R}^{2 d}$ such that $\gamma_{i}(0)=\mathbf{p}_{i}$, $\gamma_{i}(1)=\mathbf{q}_{i}$, and $\left\|\gamma_{i}-\gamma_{j}\right\|$ is a monotonous fuction for all $1 \leq i<j \leq N$.

## Corollary

The Kneser-Poulsen conjecture is true in $\mathbb{R}^{2}$.

- Let $f$ be formal expression built from the variables $x_{1}, \ldots, x_{N}$ and the operation symbols $\cup$ and $\cap$ such that each variable appears in the expression exactly once.
- $f$ can be visualized by a rooted tree in which leaves are labelled by the variables $x_{1}, \ldots, x_{N}$, inner nodes are labelled by $\cap$ and $\cup$ symbols.

- The sign $\epsilon_{i j} \in\{ \pm 1\}$ is -1 if the paths from the vertices $x_{i}$ and $x_{j}$ first meet at a vertex labelled by $\cap, \epsilon_{i j}=1$ otherwise.


## Definition

Evaluation of $f$ on some balls is a flower.

## Theorem (B. Csikós)

If there exist continuous curves $\gamma_{i}:[0,1] \rightarrow \mathbb{R}^{d+2}$ such that $\gamma_{i}(0)=\mathbf{p}_{i}$, $\gamma_{i}(1)=\mathbf{q}_{i}$, and $\epsilon_{i j}\left\|\gamma_{i}-\gamma_{j}\right\|$ is a decreasing function for all $1 \leq i<j \leq N$, then

$$
\operatorname{Vol}_{d}\left(f\left(B\left(\mathbf{p}_{1}, r\right) \ldots, B\left(\mathbf{p}_{N}, r\right)\right)\right) \geq \operatorname{Vol}_{d}\left(f\left(B\left(\mathbf{q}_{1}, r\right) \ldots, B\left(\mathbf{q}_{N}, r\right)\right)\right) .
$$

## Definition

For a bounded set $K \subset \mathbb{R}^{d}$ we define

- the support function $h_{K}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$, $h_{K}(\mathbf{u})=\sup _{\mathbf{p} \in K}\langle\mathbf{u}, \mathbf{p}\rangle ;$
- the width in the direction of $\mathbf{u} \in \mathbb{S}^{d-1}$, $w_{K}(\mathbf{u})=h_{K}(\mathbf{u})+h_{K}(-\mathbf{u})$;

- the mean width

$$
w^{d}(K)=\frac{1}{d \omega_{d}} \int_{\mathbb{S}^{d-1}} w_{K}(\mathbf{u}) \mathrm{d} \mathbf{u}=\frac{2}{d \omega_{d}} \int_{\mathbb{S}^{d-1}} h_{K}(\mathbf{u}) \mathrm{d} \mathbf{u} .
$$

## Proposition

For a fixed system of centers $\mathbf{p}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right) \in\left(R^{d}\right)^{N}$, if $r$ is large, then

$$
\operatorname{Vol}_{d}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r\right)\right)=\omega_{d}\left(r^{d}+\frac{d}{2} w(\mathbf{p}) r^{d-1}+O\left(r^{d-2}\right)\right)
$$

Theorem (I. GorBovickis)
... and

$$
\operatorname{Vol}_{d}\left(\bigcap_{i=1}^{N} B\left(\mathbf{p}_{i}, r\right)\right)=\omega_{d}\left(r^{d}-\frac{d}{2} w(\mathbf{p}) r^{d-1}+O\left(r^{d-2}\right)\right) .
$$

Theorem (V. Sudakov, R. Alexander, V. Capoyleas, J. Pach)
If $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\| \geq\left\|\mathbf{q}_{i}-\mathbf{q}_{j}\right\|$ for all $i<j$, then $w(\mathbf{p}) \geq w(\mathbf{q})$.
Theorem (I. GorBovickis)
Equality holds $\Longleftrightarrow \mathbf{p}$ is congruent to $\mathbf{q}$.

## Boolean expressions

- $\mathcal{B}_{N}=\mathcal{B}\left[x_{1}, \ldots, x_{N}\right]$ - free Boolean algebra
- binary operations $\cup, \cap, \backslash$,
- complement operation $f \mapsto \bar{f}$,
- $\emptyset$ and $X$ the minimal and maximal elements respectively.
- For $I \subseteq[N]=\{1, \ldots, N\}$ define the atomic expression $a_{I}$ by

$$
a_{I}=\left(\bigcap_{j \notin I} x_{j}\right) \cap\left(\bigcap_{i \in I} \bar{x}_{j}\right)
$$

- Every Boolean expression $f \in \mathcal{B}_{N}$ has a unique decomposition

$$
f=\bigcup_{a_{I} \subseteq f} a_{I} .
$$

- $\left|\mathcal{B}_{N}\right|=2^{2^{N}}$.
- Reduced Euler characteristic: $\tilde{\chi}_{N}(f)=\sum_{a_{I} \subseteq f}(-1)^{|I|+1}$.


## Example



- $N=2$
- 4 atomic expressions
- $\tilde{\chi}_{2}: \mathcal{B}_{2} \rightarrow[-2,2] \cap \mathbb{Z}$
- $\tilde{\chi}_{2}\left(x_{1}\right)=\chi_{2}\left(x_{2}\right)=0$
- $\tilde{\chi}_{2}\left(x_{1} \cap x_{2}\right)=-1$
- $\tilde{\chi}_{2}\left(x_{1} \cup x_{2}\right)=1$
- $\tilde{\chi}_{2}\left(x_{1} \triangle x_{2}\right)=2$
- $\tilde{\chi}_{2}\left(\bar{x}_{1} \triangle x_{2}\right)=-2$


## Boolean mean width

- $f \in \mathcal{B}_{N}$,
- $\left.\mathbf{p}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right) \in\left(\mathbb{R}^{d}\right)\right)^{N}$, points in general position,
- $e=\left[\mathbf{p}_{i}, \mathbf{p}_{j}\right]$ a segment connecting two points,
- $\mathbb{S}^{d-2}\left(e^{\perp}\right)=\{\mathbf{u} \mid \mathbf{u} \perp e$ and $\|\mathbf{u}\|=1\}$,

We define a function

$$
\nu_{f, e}: \mathbb{S}^{d-2}\left(e^{\perp}\right) \rightarrow\{-2,-1,0,1,2\}
$$

as follows.


$$
\begin{gathered}
y_{k}:= \begin{cases}\emptyset & \text { if } \mathbf{p}_{k} \in \Pi_{-} \mathbf{u} \\
X & \text { if } \mathbf{p}_{k} \in \Pi_{+} \mathbf{u} \\
x_{k} & \text { if } k \in\{i, j\}\end{cases} \\
f\left(y_{1}, \ldots, y_{N}\right) \in \mathcal{B}_{2}\left[x_{i}, x_{j}\right] \\
\nu_{f, e}(\mathbf{u}):=\tilde{\chi}_{2}\left(f\left(y_{1}, \ldots, y_{N}\right)\right)
\end{gathered}
$$

The Boolean mean width is defined as

$$
w_{f}(\mathbf{p}):=\sum_{e}\left(\int_{\mathbb{S}^{d-2}\left(e^{\perp}\right)} \nu_{f, e}(\mathbf{u}) \mathrm{d} \mathbf{u}\right) l_{e}
$$

## Results

## Theorem

For a fixed system of centers $\mathbf{p}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$, if $B_{f}(\mathbf{p}, r)=f\left(B\left(\mathbf{p}_{1}, r\right), \ldots, B\left(\mathbf{p}_{N}, r\right)\right)$ is bounded and $r$ is large, then

$$
\operatorname{Vol}_{d}\left(B_{f}(\mathbf{p}, r)\right)=\omega_{d}\left(v_{f} r^{d}+\frac{d}{2} w_{f}(\mathbf{p}) r^{d-1}+O\left(r^{d-2}\right)\right)
$$

where $v_{f}=1$ if $f \supseteq \bigcap_{i} x_{i}$, and $v_{f}=0$ otherwise.
Theorem
If $f^{*}\left(x_{1}, \ldots, x_{N}\right)=\overline{f\left(\bar{x}_{1}, \ldots, \bar{x}_{N}\right)}$ is the dual Boolean expression, then

$$
w_{f}=-w_{f^{*}} .
$$

## Theorem

If $f$ is in the free lattice generated by $x_{1}, \ldots, x_{N}$, then $f$ can be evaluated on real numbers by $a \cup b=\max \{a, b\}$ and $a \cap b=\min \{a, b\}$. In that case,

$$
w_{f}(\mathbf{p})=2 \int_{\mathbb{S}^{d-1}} f\left(\left\langle\mathbf{p}_{1}, \mathbf{u}\right\rangle, \ldots,\left\langle\mathbf{p}_{N}, \mathbf{u}\right\rangle\right) \mathrm{d} \mathbf{u}
$$

## Results

## Theorem

Let $f$ be an expression built from the variables $x_{1}, \ldots, x_{N}$ and the operations $\cup$ and $\cap$ so that each variable appears in the expression exactly once. Let $\epsilon_{i j}$ be the signs as earlier. Then if If $\epsilon_{i j}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\| \geq \epsilon_{i j}\left\|\mathbf{q}_{i}-\mathbf{q}_{j}\right\|$ for all $i<j$, then

$$
w_{f}(\mathbf{p}) \geq w_{f}(\mathbf{q})
$$

## Question

Can we have equality if $\mathbf{p}$ is not congruent to $\mathbf{q}$ ?

## Corollary (IF YES)

If the answer to the question is yes, then under the conditions of the theorem above,

$$
\operatorname{Vol}_{d}\left(B_{f}(\mathbf{p}, r)\right) \geq \operatorname{Vol}_{d}\left(B_{f}(\mathbf{p}, r)\right)
$$

for sufficiently large $r$, and a similar inequality holds also for the surface volume of the boundaries of these flowers.


