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What is Chirality?

An object is called chiral if it differs from its mirror images.



History/terminology

The term ’chiral’ means handedness, derived from the Greek

word χειρ (or ‘kheir’) for ‘hand’. It is usually attributed

to the scientist William Thomson (Lord Kelvin) in 1884,

although the philosopher Kant had earlier observed that left

and right hands are inequivalent except under mirror image.



Chirality in mathematics

The right and left trefoil knots are inequivalent . . . with
Jones polynomials t+ t3− t4 and t−1 + t−3− t−4 respectively

Many of the other invariants of these knots (including their
Alexander polynomials) are exactly the same for both, some
because they are mirror images of each other, and in purely
mathematical terms they have equal importance, but . . .



Maps of type {6,3} and {3,6} on the torus

These regular maps are chiral, and each is isomorphic to the
dual of the other. (The one on the right is a triangulation
of the torus using the complete graph K7.)



Chirality in biology/chemistry/medicine

The two enantiomorphs of thalidomide have vastly different

effects . . . one is a sedative, but its mirror image causes

birth defects . . . making the context important

Similarly, differences between aspartame (sweetener) and its

mirror image (bitter), and (S)-carvone (like caraway) and its

mirror image (R)-carvone (like spearmint).



Chiral or reflexible?

In biological/chemical/medical/physical contexts we have
no reason to expect mirror symmetry — so objects tend to
be chiral — but the following is a remarkable phenomenon:

When a discrete object has a large degree of rotational
symmetry, it often happens that it has also reflectional
symmetry, so that chirality is not necessarily the norm

e.g. the Platonic solids are all reflexible!



Open question: How prevalent is chirailty?

• for Riemann surfaces?

• for regular maps?

• for abstract polytopes?

• for other orientable discrete structures like these?



Riemann surfaces

A Riemann surface is a 1-dimensional complex manifold.
More roughly speaking, a Riemann surface is an orientable
surface endowed with some analytic structure.

An automorphism of a Riemann surface X is a structure-
preserving homeomorphism from X to X, and this can be
conformal or anticonformal, depending on whether it pre-
serves or reverses the orientation of X.

Theorem [Hurwitz (1893)] A compact Riemann surface of
genus g > 1 has at most 84(g−1) conformal automorphisms,
and this upper bound is attained if and only if the conformal
automorphism group Aut+(X) is a (smooth) quotient of the
ordinary (2,3,7) triangle group 〈x, y |x2 = y3 = (xy)7 = 1 〉.



Hurwitz surfaces of ‘small’ genus

Genus Rfl Ch

3 1 0
7 1 0

14 3 0
17 0 2

118 1 0
129 1 2
146 3 0
385 1 0
411 3 0
474 3 0
687 1 0

Genus Rfl Ch

769 3 0
1009 1 0
1025 0 8
1459 1 0
1537 1 0
2091 1 6
2131 3 0
2185 3 0
2663 0 2
3404 3 0
4369 3 0

Genus Rfl Ch

4375 1 0
5433 3 0
5489 0 2
6553 3 0
7201 1 4
8065 0 2
8193 1 12
8589 3 0

11626 1 0
11665 0 2
Total 50 42

Rfl = Reflexible Ch = Chiral



Orientably-regular maps

A map is an embedding of a connected graph or multigraph

on a closed surface, breaking it up into simply-connected

regions called the faces of the map.

A map M on an orientable surface is orientably-regular if

the group of all of its orientation-preserving automorphisms

is transitive on the arcs (incident vertex-edge pairs) of M .

In that case, every vertex has the same degree/valency m,

and every face of the map has the same size k, and we call

{k,m} the type of the map.

Orientably-regular maps are sometimes just called ‘regular’.

Those that admit orientation-preserving automorphisms are

‘reflexible’, while the others are ‘chiral’.



The Platonic solids give rise to reflexible maps on the sphere

— with types {3,3}, {3,5}, {5,3}, {3,4} and {4,3}:

Regular maps on the torus (genus 1) have types {3,6}, {4,4}
and {6,3}, and infinitely many of these are reflexible, and

infinitely many are chiral.



A reflexible map of type {3,7} on a surface of genus 7



Chirality among regular maps of small genus?

Rotary orientable maps of small genus:
Genus 2: 6 reflexible, 0 chiral
Genus 3: 12 reflexible, 0 chiral
Genus 4: 12 reflexible, 0 chiral
Genus 5: 16 reflexible, 0 chiral
Genus 6: 13 reflexible, 0 chiral
Genus 7: 12 reflexible, 4 chiral

Genus 2 to 100: 5972 reflexible, 1916 chiral (24% chiral)
Genus 101 to 200: 9847 reflexible, 4438 chiral (31%)
Genus 201 to 300: 10600 reflexible, 5556 chiral (34%)

Important open question: What about for larger genera?



Chiral maps/polyhedra of given type

By an amazing piece of work of Murray Macbeath (1969),

it is known that for every hyperbolic pair (k,m) of positive

integers (with 1/k + 1/m < 1/2), there exist infinitely many

orientably-regular maps of type {k,m} (with rotation groups

PSL(2, p) for various primes p). All of these maps are re-

flexible, and hence fully regular.

Question [Singerman (1992)]: What about chiral maps?

Theorem [Bujalance, MC & Costa (2010)]: For every ` ≥ 7,

all but finitely many An are the automorphism group of an

orientably-regular but chiral map of type {3, `}.



New Theorem (2014):

For every hyperbolic pair (k,m), there exist infinitely many

orientably-regular but chiral maps of type {k,m}.

One ‘base’ example for each type can be found by

• constructing permutation representations of the ordinary

(2, k,m) triangle group [MC, Hućıková, Nedela & Širáň],

or by

• using group representations and the theory of differentials

on Riemann surfaces [Jones].

Then infinitely many more examples of each type {k,m} can

be constructed by the ‘Macbeath trick’ for abelian p-covers.



Other consequences

1) Chiral maps with simple underlying graphs:

The automorphism groups of the base examples of both

kinds are ‘almost-simple’, and in particular, have no cyclic

normal subgroups. It follows that the vertex- and face- sta-

bilisers are core-free in the automorphism group of the map,

and hence for every hyperbolic pair (k,m), there exist at

least two orientably-regular maps of type {k,m}, one re-

flexible and one chiral, such that both the map and its dual

have simple underlying graph.

In fact there are infinitely many of each kind, and the same

is known for the toroidal case (with 1/k + 1/m = 1/2).



2) Chiral polyhedra of every hyperbolic type:

Also in each of these maps, every edge has two vertices

and every edge lies in two faces, and therefore the maps are

abstract polyhedra. Thus we have the following as well:

For every pair (k,m) of integers with 1/k+1/m ≤ 1/2, there

exist infinitely many regular and infinitely many orientably-

regular but chiral polyhedra of type {k,m}.



What about polytopes?

This is a much more challenging question.

Less than 10 years ago, finite chiral polytopes were known

for ranks 3 and 4 only. Then some examples of rank 5 were

found [by Isabel Hubard, Tomo Pisanski & MC], followed by

examples of ranks 6, 7 and 8 [by Alice Devillers & MC].

At around the same time, Daniel Pellicer devised a clever

construction (essentially using permutation representations

of Coxeter groups) to prove that there exist finite chiral

polytopes of rank n for every n ≥ 3.



Backtracking ... Regular and chiral polytopes

An abstract polytope P is a structure with the features of a
geometric polytope, considered as a partially ordered set:

This poset must satisfy certain combinatorial conditions
(namely strong connectivity and the diamond condition).

The number of intermediate layers is called the rank of P.



Regular polytopes

An automorphism of an abstract polytope P is an order-
preserving bijection P → P. Every automorphism is uniquely
determined by its effect on any given flag (maximal chain),
so the number of automorphisms is bounded above by the
number of flags of P. When the upper bound is attained,
we say that P is regular.

Also if P is regular, then AutP is a quotient of some ‘string’
Coxeter group [ k1, k2, .., kn−1], with Coxeter/Dynkin diagram

...........................................................................

..... ...........................................................................
..... ...........................................................................

..... ...........................................................................
..... ...........................................................................



k1 k2 kn−1

We call {k1, k2, .., kn−1} the type of P.



Chiral polytopes

Two flags are called adjacent if they differ in just one ele-

ment. (In the map context, think about two faces incident

with a given vertex v and edge e, or two edges incident with

a given vertex v and face f , for example.)

If the automorphism group AutP of the polytope P has two

orbits on flags, such that every two adjacent flags lie in dif-

ferent orbits, then P is said to be chiral.

In that case, AutP is a quotient of the index 2 orientation-

preserving subgroup C+ of some Coxeter group C, via a sub-

group N that’s normal in C+ but not in C.



Constructions for chiral polytopes

In general, we can (try to) construct chiral polytopes vis
their automorphism groups. We take a ‘string’ Coxeter
group C and look for suitable quotients G = C+/N of the
index 2 subgroup C+ that do not extend to quotients of C
– this requires N to be normal in C+ but not in C.

Also the quotient has to be ‘smooth’ (preserving orders of
generators and certain other elements of C+), and satisfy
an Intersection Condition on particular subgroups.

There are many ways of doing this – computational search,
permutation representations, algebraic tricks, ‘mixing’, etc.

But none of these work as well for chiral polytopes as they
do for regular polytopes, when the rank is greater than 3.



Drawback to inductive construction(s)

If P is a chiral n-polytope, then the stabilizer in Γ(P) of

each (n−2)-face Fn−2 of P is transitive on the flags of Fn−2,

and therefore every (n−2)-face of P is regular!
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Fn

Fn−1 F ′n−1

Fn−2

. . . σ swaps Fn−1 with F ′n−1

Fi+1

Fi F ′i

Fi−1

. . . σ swaps Fi with F ′i



So ... construct chiral polytopes from regular!

For example, start with the n-simplex, which is a regular

polytope of type [3, n−1. . . ,3], with automorphism group Sn+1.

Now take a faithful permutation representation of the al-

ternating group An+1, and extend this to a smooth permu-

tation representation of the orientation-preserving subgroup

of the [3, n−1. . . ,3,m] Coxeter group, for some m.

Careful choice may ensure that this gives the automorphism

group of a chiral polytope of rank n+ 1.



Recent theorems [proved in joint work with Isabel

Hubard, Daniel Pellicer and Eugenia O’Reilly Reguiero]

• For all but finitely many positive integers n, both An and

Sn are the automorphism groups of a chiral 4-polytope with

type {3,3,m} for some m.

• For every d > 3, there are infinitely many chiral d-polytopes

with type {3,3, . . . ,3,m} for some m.



Special construction due to Daniel Pellicer

• Take a chiral d-polytope K with regular facets

• Let Q be the ‘mixed regular cover’ of K

• Suppose/insist that K is ‘scattered’ — which means it

has a flag that in Q is mapped far away from itself by the

automorphism ρ0

• Can then construct infinitely many chiral (d+1)-polytopes

P with facets isomorphic to Q

• Almost all such P are scattered, and so this construction

works for all d.



Smaller/smallest chiral polytopes?

All the current approaches to constructing chiral polytopes

give rise to examples that are very very large

— e.g. with An or Sn as automorphism group, for large n.

But there are examples that are quite small:

• Rank 3: chiral 3-polytopes with 20, 40, 42, 52, 54 flags

• Rank 4: chiral 4-polytopes with 120, 162, 192, 240 flags

• Rank 5: chiral 5-polytopes with 720, 1440 flags

Open question: What are the smallest chiral 6-polytopes?



New approach: take covers!

Let P be a regular or chiral polytope with ‘rotation group’

A = Aut+(P). If Q is a larger regular or chiral polytope of

the same rank as P, and its rotation group B = Aut+(Q)

has a normal subgroup N such that B/N is isomorphic to A

(in a nice way), then let’s call Q a cover of P.

Auckland PhD student Wei-Juan Zhang has done some very

nice work on constructing covers of given regular polytopes.

For a true ‘cover’, the type is preserved, but we can relax

that condition, and this approach has been quite fruitful —

e.g. for constructing infinite families of chiral polytopes of

types {4s,4t} with 80st flags, or types {4,4,4s} and {4,4s,4}
with 400s flags, or type {3s,6,9} with 486s flags, and so on.



Work in progress [with PhD student Wei-Juan Zhang]

Start with a regular polytope P of small order compared with

its rank — e.g. of type {4,4, . . . ,4} or {4,3,6, . . . ,3,6,3,4}.

Then try to contract chiral polytopes that are ‘covers’ of P
with small covering group N .

Some success to date, but the difficulty is in finding ways

to make P and the overing group N both ‘small’.

This approach should work: surprisingly, a large proportion

small chiral polytopes of small rank are covers of smaller

regular polytopes.





Abstract

Symmetry is pervasive in both nature and human culture.

The notion of chirality (or ’handedness’) is similarly perva-

sive, but less well understood. In this lecture, given in cele-

bration of Egon Schulte and Károly Bezdek’s 60th birthdays,

I will talk about discrete objects that have maximum possible

rotational symmetry in their class, but are not ‘reflexible’.

The main examples are orientably-regular maps (and the as-

sociated Riemann surfaces), and abstract polytopes. Finite

chiral polytopes of large rank are notoriously difficult to con-

struct, but I will describe some new approaches (developed

in joint work with a number of people) that provide some

evidence that they are not quite as rare as once thought.


