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Z . F — A is a valuation if

Z(KUL)+Z(KNL) = Z(K)+ Z(L)

for any K, L € F satisfying KNLe Fand KUL € F.
Origin Dehn’s solutions of Hilbert's scissors congruency problem
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Examples of Valuations and Group actions
Support function h: C(R") - R
> If K, LKL KULeEC(RY, then hxnt + hxor = hi + by
Intrinsic volumes V; : C(R") = R, i =0,...,n (rigid motion
invariant)

» Vo(K) =1 (Euler characteristic)
» V,(K) =volume
» Vi(K) - " i-dimensional mean projection”, i=1,...,n—1
Steiner point s : C(R") — R"
> rigid motion equivariant, Minkowski additive
Minkowski valuations Z : C(R") — C(R")
Difference body DK = K — K
» SL(n,R) equivariant, translation invariant
Projection body M : C(R") — C(R"), hnk,u = Va_1(K|ut),
u € S" 1 K|ut is the projection into u™

» SL(n,R) contravariant, translation invariant
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Open problem

» Characterize rigid motion invariant valuations Z : P(R") — R
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Polynomial valuations
Definition Z : F — R¥ is a polynomial valuation of degree at most
d if
Z(K+x)=Z(K)+6(K,x) forany K € F
where 0(K, x) is a polynomial of degree at most d in x where
x € R" for F = C(R"), P(R"), and x € Z" for F = P(Z")
Examples ¢ : R” — R¥ polynomial of degree d
either Z(K) = / ply)dy or Z(K)= > «(y)
K yEKNZ"
Theorem (McMullen,Khovanski,Pukhilov)
If Z is a polynomial valuation of degree at most d, and A € N, then

n+d

Z(AP) =) Z(P)X

i=0

where Z; homogeneous valuation valuation of degree i, and Z; is
Minkowski additive; namely, Z1(K + L) = Z1(K) + Z1(L).



Steiner point

Definition s : C(R") — R"
(K) = gy [, ub(@)d
IERVAT-T) I St
where B" is the Euclidean unit ball.

Theorem (Schneider (1971))

Z : C(R™) — R" is Minkowski additive, continuous and rigid
motion equivariant valuation iff Z = s.



SL(n, R) interwining Minkowski valuations

Theorem (Ludwig (2005))
Let n> 2, and let Z : P(R") — C(R") be Minkowski valuation.

» Z is SL(n,R) equivariant and translation invariant iff there
exists o > 0 such that Z(K) = a(K — K).

» Z is SL(n,R) contravariant and translation invariant iff there
exists o > 0 such that Z(K) = allK.

Remark Z is an SL(n,R) contravariant means
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SL(n, R) interwining Minkowski valuations

Theorem (Ludwig (2005))
Let n> 2, and let Z : P(R") — C(R") be Minkowski valuation.

» Z is SL(n,R) equivariant and translation invariant iff there
exists o > 0 such that Z(K) = a(K — K).

» Z is SL(n,R) contravariant and translation invariant iff there
exists o > 0 such that Z(K) = allK.

Remark Z is an SL(n,R) contravariant means
Z(®K) = & tZ(K) for & € SL(n,R)

Remark Haberl, Parapatits (2014) characterized SL(n, R)
equivariant Minkowski valuations and SL(n, R) contravariant
Minkowski valuations (without translation invariance)
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Valuations on lattice polytopes

Definition Lattice point enumerator
G(K)=#(KNZ") for KeP(Z").

Theorem (Ehrhart (1967))

For K € P(Z") and A € N, G(AK) = 31 Gi(K)\'.

Theorem (Betke, Kneser (1985))

Z: P(Z") — R is an SL(n,Z) and translation invariant valuation
iff there exist «v, . ..,a, € R such that

Z(K) =) _aiG(K).
i=0
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Remark m(K + x) = m(K) + G(K)x, and hence
n+1 )
m(AK) =Y mi(K)A" for A€ N
i=0
Definition o = m; the discrete Steiner point (Minkowski additive)
Remark

» o(K) is the centroid if K is a unimodular simplex or centrally
symmetric

» Possibly o(K) ¢ K

Theorem (K.J. Boroczky, M. Ludwig)

Z: P(Z") — R" is SL(n,Z) and translation equivariant valuation
iffZ=o.



SL(n,Z) interwining Minkowski valuations on lattice
polytopes

Theorem (K.J. Boroczky, M. Ludwig)
Let Z : P(Z") — C(R").
» Z is an SL(n,Z) equivariant and translation invariant

Minkowski valuation for n > 2 iff there exist o, 5 > 0 such
that

Z(K) = a(K = o(K)) + B((—=K) — o(=K))

» Z is an SL(n,Z) contravariant and translation invariant
Minkowski valuation for n > 3 iff there exists o« > 0 such that
Z(K) =allK.



Many more beautiful theorems to Egon and Karoly
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