Valuations on Lattice Polytopes

Károly J. Böröczky
Alfréd Rényi Institute of Mathematics joint work with Monika Ludwig

June 30, 2015
honoring Egon Schulte's and Karoly Bezdek's
$60^{\text {th }}$ birthday

Valuations

$\mathcal{F}=$ a family of convex sets in \mathbb{R}^{n}, e.g.

- $\mathcal{C}\left(\mathbb{R}^{n}\right)=$ compact convex sets in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{R}^{n}\right)=$ polytopes in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{Z}^{n}\right)=$ lattice polytopes for \mathbb{Z}^{n}
$\mathbb{A}=$ an Abelian semi-group, e.g.
- \mathbb{R} - real valued valuation
- \mathbb{R}^{n} - vector valued valuations
- $\mathcal{C}\left(\mathbb{R}^{n}\right)$ - Minkowski valuations

Valuations

$\mathcal{F}=$ a family of convex sets in \mathbb{R}^{n}, e.g.

- $\mathcal{C}\left(\mathbb{R}^{n}\right)=$ compact convex sets in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{R}^{n}\right)=$ polytopes in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{Z}^{n}\right)=$ lattice polytopes for \mathbb{Z}^{n}
$\mathbb{A}=$ an Abelian semi-group, e.g.
- \mathbb{R} - real valued valuation
- \mathbb{R}^{n} - vector valued valuations
- $\mathcal{C}\left(\mathbb{R}^{n}\right)$ - Minkowski valuations
$Z: \mathcal{F} \rightarrow \mathbb{A}$ is a valuation if

$$
Z(K \cup L)+Z(K \cap L)=Z(K)+Z(L)
$$

for any $K, L \in \mathcal{F}$ satisfying $K \cap L \in \mathcal{F}$ and $K \cup L \in \mathcal{F}$.

Valuations

$\mathcal{F}=$ a family of convex sets in \mathbb{R}^{n}, e.g.

- $\mathcal{C}\left(\mathbb{R}^{n}\right)=$ compact convex sets in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{R}^{n}\right)=$ polytopes in \mathbb{R}^{n}
- $\mathcal{P}\left(\mathbb{Z}^{n}\right)=$ lattice polytopes for \mathbb{Z}^{n}
$\mathbb{A}=$ an Abelian semi-group, e.g.
- \mathbb{R} - real valued valuation
- \mathbb{R}^{n} - vector valued valuations
- $\mathcal{C}\left(\mathbb{R}^{n}\right)$ - Minkowski valuations
$Z: \mathcal{F} \rightarrow \mathbb{A}$ is a valuation if

$$
Z(K \cup L)+Z(K \cap L)=Z(K)+Z(L)
$$

for any $K, L \in \mathcal{F}$ satisfying $K \cap L \in \mathcal{F}$ and $K \cup L \in \mathcal{F}$.
Origin Dehn's solutions of Hilbert's scissors congruency problem

Examples of Valuations and Group actions

Support function $h: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$

- If $K, L, K \cap L, K \cup L \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, then $h_{K \cap L}+h_{K \cup L}=h_{K}+h_{L}$ Intrinsic volumes $V_{i}: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, i=0, \ldots, n$ (rigid motion invariant)
- $V_{0}(K)=1$ (Euler characteristic)
- $V_{n}(K)=$ volume
- $V_{i}(K)$ - " i-dimensional mean projection", $i=1, \ldots, n-1$

Examples of Valuations and Group actions

Support function $h: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$

- If $K, L, K \cap L, K \cup L \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, then $h_{K \cap L}+h_{K \cup L}=h_{K}+h_{L}$ Intrinsic volumes $V_{i}: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, i=0, \ldots, n$ (rigid motion invariant)
- $V_{0}(K)=1$ (Euler characteristic)
- $V_{n}(K)=$ volume
- $V_{i}(K)$ - " i-dimensional mean projection", $i=1, \ldots, n-1$

Steiner point $s: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$

- rigid motion equivariant, Minkowski additive

Examples of Valuations and Group actions

Support function $h: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$

- If $K, L, K \cap L, K \cup L \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, then $h_{K \cap L}+h_{K \cup L}=h_{K}+h_{L}$ Intrinsic volumes $V_{i}: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, i=0, \ldots, n$ (rigid motion invariant)
- $V_{0}(K)=1$ (Euler characteristic)
- $V_{n}(K)=$ volume
- $V_{i}(K)$ - " i-dimensional mean projection", $i=1, \ldots, n-1$

Steiner point $s: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$

- rigid motion equivariant, Minkowski additive Minkowski valuations $Z: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$ Difference body $D K=K-K$
- $\mathrm{SL}(n, \mathbb{R})$ equivariant, translation invariant

Projection body $\Pi: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right), h_{\Pi K, u}=V_{n-1}\left(K \mid u^{\perp}\right)$, $u \in S^{n-1}, K \mid u^{\perp}$ is the projection into u^{\perp}

- $\mathrm{SL}(n, \mathbb{R})$ contravariant, translation invariant

The Hadwiger Classification Theorem, 1952

Theorem
$Z: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_{0}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
Z(K)=\sum_{i=0}^{n} c_{i} V_{i}(K)
$$

The Hadwiger Classification Theorem, 1952

Theorem
$Z: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_{0}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
Z(K)=\sum_{i=0}^{n} c_{i} V_{i}(K)
$$

Remark

- Alesker (2000) characterized $\mathrm{SO}(n, \mathbb{R})$ invariant and polynomial valuations

The Hadwiger Classification Theorem, 1952

Theorem
$Z: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_{0}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
Z(K)=\sum_{i=0}^{n} c_{i} V_{i}(K)
$$

Remark

- Alesker (2000) characterized $\mathrm{SO}(n, \mathbb{R})$ invariant and polynomial valuations
Open problem
- Characterize rigid motion invariant valuations $Z: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$

Polynomial valuations

Definition $Z: \mathcal{F} \rightarrow \mathbb{R}^{k}$ is a polynomial valuation of degree at most d if

$$
Z(K+x)=Z(K)+\theta(K, x) \text { for any } K \in \mathcal{F}
$$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^{n}$ for $\mathcal{F}=\mathcal{C}\left(\mathbb{R}^{n}\right), \mathcal{P}\left(\mathbb{R}^{n}\right)$, and $x \in \mathbb{Z}^{n}$ for $\mathcal{F}=\mathcal{P}\left(\mathbb{Z}^{n}\right)$

Polynomial valuations

Definition $Z: \mathcal{F} \rightarrow \mathbb{R}^{k}$ is a polynomial valuation of degree at most d if

$$
Z(K+x)=Z(K)+\theta(K, x) \text { for any } K \in \mathcal{F}
$$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^{n}$ for $\mathcal{F}=\mathcal{C}\left(\mathbb{R}^{n}\right), \mathcal{P}\left(\mathbb{R}^{n}\right)$, and $x \in \mathbb{Z}^{n}$ for $\mathcal{F}=\mathcal{P}\left(\mathbb{Z}^{n}\right)$
Examples $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ polynomial of degree d

$$
\text { either } Z(K)=\int_{K} \varphi(y) d y \text { or } Z(K)=\sum_{y \in K \cap \mathbb{Z}^{n}} \varphi(y)
$$

Polynomial valuations

Definition $Z: \mathcal{F} \rightarrow \mathbb{R}^{k}$ is a polynomial valuation of degree at most d if

$$
Z(K+x)=Z(K)+\theta(K, x) \text { for any } K \in \mathcal{F}
$$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^{n}$ for $\mathcal{F}=\mathcal{C}\left(\mathbb{R}^{n}\right), \mathcal{P}\left(\mathbb{R}^{n}\right)$, and $x \in \mathbb{Z}^{n}$ for $\mathcal{F}=\mathcal{P}\left(\mathbb{Z}^{n}\right)$
Examples $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ polynomial of degree d

$$
\text { either } Z(K)=\int_{K} \varphi(y) d y \text { or } Z(K)=\sum_{y \in K \cap \mathbb{Z}^{n}} \varphi(y)
$$

Theorem (McMullen, Khovanski,Pukhilov)
If Z is a polynomial valuation of degree at most d, and $\lambda \in \mathbb{N}$, then

$$
Z(\lambda P)=\sum_{i=0}^{n+d} Z_{i}(P) \lambda^{i}
$$

where Z_{i} homogeneous valuation valuation of degree i, and Z_{1} is Minkowski additive; namely, $Z_{1}(K+L)=Z_{1}(K)+Z_{1}(L)$.

Steiner point

Definition $s: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$

$$
s(K)=\frac{1}{V_{n}\left(B^{n}\right)} \int_{S^{n-1}} u h_{K}(u) d u
$$

where B^{n} is the Euclidean unit ball.
Theorem (Schneider (1971))
$Z: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is Minkowski additive, continuous and rigid motion equivariant valuation iff $Z=s$.

$\mathrm{SL}(n, \mathbb{R})$ interwining Minkowski valuations

Theorem (Ludwig (2005))
Let $n \geq 2$, and let $Z: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$ be Minkowski valuation.

- Z is $S L(n, \mathbb{R})$ equivariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K)=\alpha(K-K)$.
- Z is $S L(n, \mathbb{R})$ contravariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K)=\alpha \Pi K$.

Remark Z is an $\operatorname{SL}(n, \mathbb{R})$ contravariant means

$$
Z(\Phi K)=\Phi^{-t} Z(K) \quad \text { for } \quad \Phi \in \mathrm{SL}(n, \mathbb{R})
$$

$\mathrm{SL}(n, \mathbb{R})$ interwining Minkowski valuations

Theorem (Ludwig (2005))
Let $n \geq 2$, and let $Z: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$ be Minkowski valuation.

- Z is $S L(n, \mathbb{R})$ equivariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K)=\alpha(K-K)$.
- Z is $S L(n, \mathbb{R})$ contravariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K)=\alpha \Pi K$.

Remark Z is an $\operatorname{SL}(n, \mathbb{R})$ contravariant means

$$
Z(\Phi K)=\Phi^{-t} Z(K) \quad \text { for } \quad \Phi \in \mathrm{SL}(n, \mathbb{R})
$$

Remark Haberl, Parapatits (2014) characterized $\operatorname{SL}(n, \mathbb{R})$ equivariant Minkowski valuations and $\operatorname{SL}(n, \mathbb{R})$ contravariant Minkowski valuations (without translation invariance)

Valuations on lattice polytopes

Definition Lattice point enumerator

$$
G(K)=\#\left(K \cap \mathbb{Z}^{n}\right) \text { for } K \in \mathcal{P}\left(\mathbb{Z}^{n}\right)
$$

Theorem (Ehrhart (1967))
For $K \in \mathcal{P}\left(\mathbb{Z}^{n}\right)$ and $\lambda \in \mathbb{N}, G(\lambda K)=\sum_{i=0}^{n} G_{i}(K) \lambda^{i}$.

Valuations on lattice polytopes

Definition Lattice point enumerator

$$
G(K)=\#\left(K \cap \mathbb{Z}^{n}\right) \text { for } K \in \mathcal{P}\left(\mathbb{Z}^{n}\right)
$$

Theorem (Ehrhart (1967))
For $K \in \mathcal{P}\left(\mathbb{Z}^{n}\right)$ and $\lambda \in \mathbb{N}, G(\lambda K)=\sum_{i=0}^{n} G_{i}(K) \lambda^{i}$.
Theorem (Betke, Kneser (1985))
$Z: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}$ is an $\operatorname{SL}(n, \mathbb{Z})$ and translation invariant valuation iff there exist $\alpha_{0}, \ldots, \alpha_{n} \in \mathbb{R}$ such that

$$
Z(K)=\sum_{i=0}^{n} \alpha_{i} G_{i}(K)
$$

discrete Steiner point

Definition discrete moment vector $m: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}^{n}$

$$
m(K)=\sum\left\{y: y \in K \cap \mathbb{Z}^{n}\right\}
$$

Remark $m(K+x)=m(K)+G(K) x$, and hence

$$
m(\lambda K)=\sum_{i=0}^{n+1} m_{i}(K) \lambda^{i} \text { for } \lambda \in \mathbb{N}
$$

discrete Steiner point

Definition discrete moment vector $m: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}^{n}$

$$
m(K)=\sum\left\{y: y \in K \cap \mathbb{Z}^{n}\right\}
$$

Remark $m(K+x)=m(K)+G(K) x$, and hence

$$
m(\lambda K)=\sum_{i=0}^{n+1} m_{i}(K) \lambda^{i} \text { for } \lambda \in \mathbb{N}
$$

Definition $\sigma=m_{1}$ the discrete Steiner point (Minkowski additive) Remark

- $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric

discrete Steiner point

Definition discrete moment vector $m: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}^{n}$

$$
m(K)=\sum\left\{y: y \in K \cap \mathbb{Z}^{n}\right\}
$$

Remark $m(K+x)=m(K)+G(K) x$, and hence

$$
m(\lambda K)=\sum_{i=0}^{n+1} m_{i}(K) \lambda^{i} \text { for } \lambda \in \mathbb{N}
$$

Definition $\sigma=m_{1}$ the discrete Steiner point (Minkowski additive) Remark

- $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric
- Possibly $\sigma(K) \notin K$

discrete Steiner point

Definition discrete moment vector $m: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}^{n}$

$$
m(K)=\sum\left\{y: y \in K \cap \mathbb{Z}^{n}\right\}
$$

Remark $m(K+x)=m(K)+G(K) x$, and hence

$$
m(\lambda K)=\sum_{i=0}^{n+1} m_{i}(K) \lambda^{i} \text { for } \lambda \in \mathbb{N}
$$

Definition $\sigma=m_{1}$ the discrete Steiner point (Minkowski additive) Remark

- $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric
- Possibly $\sigma(K) \notin K$

Theorem (K.J. Boroczky, M. Ludwig)
$Z: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{R}^{n}$ is $S L(n, \mathbb{Z})$ and translation equivariant valuation iff $Z=\sigma$.

SL (n, \mathbb{Z}) interwining Minkowski valuations on lattice polytopes

Theorem (K.J. Boroczky, M. Ludwig)
Let $Z: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$.

- Z is an $\operatorname{SL}(n, \mathbb{Z})$ equivariant and translation invariant Minkowski valuation for $n \geq 2$ iff there exist $\alpha, \beta \geq 0$ such that

$$
Z(K)=\alpha(K-\sigma(K))+\beta((-K)-\sigma(-K))
$$

- Z is an $S L(n, \mathbb{Z})$ contravariant and translation invariant Minkowski valuation for $n \geq 3$ iff there exists $\alpha \geq 0$ such that $Z(K)=\alpha \Pi K$.

Many more beautiful theorems to Egon and Karoly

