Valuations on Lattice Polytopes

Károly J. Böröczky Alfréd Rényi Institute of Mathematics joint work with Monika Ludwig

June 30, 2015 honoring Egon Schulte's and Karoly Bezdek's 60^{th} birthday

Valuations

- \mathcal{F} = a family of convex sets in \mathbb{R}^n , e.g.
 - $\mathcal{C}(\mathbb{R}^n)$ =compact convex sets in \mathbb{R}^n
 - $ightharpoonup \mathcal{P}(\mathbb{R}^n) = \text{polytopes in } \mathbb{R}^n$
 - $ightharpoonup \mathcal{P}(\mathbb{Z}^n) =$ lattice polytopes for \mathbb{Z}^n
- A= an Abelian semi-group, e.g.
 - ▶ R real valued valuation
 - $ightharpoonup \mathbb{R}^n$ vector valued valuations
 - $ightharpoonup \mathcal{C}(\mathbb{R}^n)$ Minkowski valuations

Valuations

 \mathcal{F} = a family of convex sets in \mathbb{R}^n , e.g.

- $\mathcal{C}(\mathbb{R}^n)$ =compact convex sets in \mathbb{R}^n
- $ightharpoonup \mathcal{P}(\mathbb{R}^n) = \text{polytopes in } \mathbb{R}^n$
- $ightharpoonup \mathcal{P}(\mathbb{Z}^n) =$ lattice polytopes for \mathbb{Z}^n

A= an Abelian semi-group, e.g.

- ▶ ℝ real valued valuation
- $ightharpoonup \mathbb{R}^n$ vector valued valuations
- $ightharpoonup \mathcal{C}(\mathbb{R}^n)$ Minkowski valuations

 $Z: \mathcal{F} \to \mathbb{A}$ is a valuation if

$$Z(K \cup L) + Z(K \cap L) = Z(K) + Z(L)$$

for any $K, L \in \mathcal{F}$ satisfying $K \cap L \in \mathcal{F}$ and $K \cup L \in \mathcal{F}$.

Valuations

 \mathcal{F} = a family of convex sets in \mathbb{R}^n , e.g.

- $ightharpoonup \mathcal{C}(\mathbb{R}^n)=$ compact convex sets in \mathbb{R}^n
- $ightharpoonup \mathcal{P}(\mathbb{R}^n) = \mathsf{polytopes} \ \mathsf{in} \ \mathbb{R}^n$
- $ightharpoonup \mathcal{P}(\mathbb{Z}^n) =$ lattice polytopes for \mathbb{Z}^n

A= an Abelian semi-group, e.g.

- ▶ ℝ real valued valuation
- $ightharpoonup \mathbb{R}^n$ vector valued valuations
- $ightharpoonup \mathcal{C}(\mathbb{R}^n)$ Minkowski valuations

 $Z: \mathcal{F} \to \mathbb{A}$ is a valuation if

$$Z(K \cup L) + Z(K \cap L) = Z(K) + Z(L)$$

for any $K, L \in \mathcal{F}$ satisfying $K \cap L \in \mathcal{F}$ and $K \cup L \in \mathcal{F}$. Origin Dehn's solutions of Hilbert's scissors congruency problem

Examples of Valuations and Group actions

Support function $h: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$

▶ If $K, L, K \cap L, K \cup L \in \mathcal{C}(\mathbb{R}^n)$, then $h_{K \cap L} + h_{K \cup L} = h_K + h_L$

Intrinsic volumes $V_i: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}, i = 0, \dots, n$ (rigid motion invariant)

- $V_0(K) = 1$ (Euler characteristic)
- $V_n(K) = \text{volume}$
- $ightharpoonup V_i(K)$ "i-dimensional mean projection", $i=1,\ldots,n-1$

Examples of Valuations and Group actions

Support function $h: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$

▶ If $K, L, K \cap L, K \cup L \in \mathcal{C}(\mathbb{R}^n)$, then $h_{K \cap L} + h_{K \cup L} = h_K + h_L$

Intrinsic volumes $V_i: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}, i = 0, \dots, n$ (rigid motion invariant)

- $V_0(K) = 1$ (Euler characteristic)
- $V_n(K) = \text{volume}$
- ▶ $V_i(K)$ "i-dimensional mean projection", i = 1, ..., n-1

Steiner point $s: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}^n$

rigid motion equivariant, Minkowski additive

Examples of Valuations and Group actions

Support function $h: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$

▶ If $K, L, K \cap L, K \cup L \in \mathcal{C}(\mathbb{R}^n)$, then $h_{K \cap L} + h_{K \cup L} = h_K + h_L$

Intrinsic volumes $V_i: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}, i = 0, ..., n$ (rigid motion invariant)

- $V_0(K) = 1$ (Euler characteristic)
- $V_n(K) = \text{volume}$
- $V_i(K)$ "i-dimensional mean projection", $i=1,\ldots,n-1$

Steiner point $s: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}^n$

rigid motion equivariant, Minkowski additive

Minkowski valuations $Z: \mathcal{C}(\mathbb{R}^n) \to \mathcal{C}(\mathbb{R}^n)$

Difference body DK = K - K

 $ightharpoonup \mathrm{SL}(n,\mathbb{R})$ equivariant, translation invariant

Projection body $\Pi: \mathcal{C}(\mathbb{R}^n) \to \mathcal{C}(\mathbb{R}^n), h_{\Pi K, u} = V_{n-1}(K|u^{\perp}),$ $u \in S^{n-1}$, $K|u^{\perp}$ is the projection into u^{\perp}

 $ightharpoonup \mathrm{SL}(n,\mathbb{R})$ contravariant, translation invariant

The Hadwiger Classification Theorem, 1952

Theorem

 $Z: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_0, \ldots, c_n \in \mathbb{R}$ such that

$$Z(K) = \sum_{i=0}^{n} c_i V_i(K)$$

The Hadwiger Classification Theorem, 1952

Theorem

 $Z: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_0, \ldots, c_n \in \mathbb{R}$ such that

$$Z(K) = \sum_{i=0}^{n} c_i V_i(K)$$

Remark

▶ Alesker (2000) characterized $SO(n, \mathbb{R})$ invariant and polynomial valuations

The Hadwiger Classification Theorem, 1952

Theorem

 $Z: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}$ is rigid motion invariant and continous valuation iff there exist $c_0, \ldots, c_n \in \mathbb{R}$ such that

$$Z(K) = \sum_{i=0}^{n} c_i V_i(K)$$

Remark

▶ Alesker (2000) characterized $SO(n, \mathbb{R})$ invariant and polynomial valuations

Open problem

▶ Characterize rigid motion invariant valuations $Z: \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}$

Polynomial valuations

Definition $Z: \mathcal{F} \to \mathbb{R}^k$ is a polynomial valuation of degree at most d if

$$Z(K + x) = Z(K) + \theta(K, x)$$
 for any $K \in \mathcal{F}$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^n$ for $\mathcal{F} = \mathcal{C}(\mathbb{R}^n), \mathcal{P}(\mathbb{R}^n)$, and $x \in \mathbb{Z}^n$ for $\mathcal{F} = \mathcal{P}(\mathbb{Z}^n)$

Polynomial valuations

Definition $Z: \mathcal{F} \to \mathbb{R}^k$ is a polynomial valuation of degree at most d if

$$Z(K + x) = Z(K) + \theta(K, x)$$
 for any $K \in \mathcal{F}$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^n$ for $\mathcal{F} = \mathcal{C}(\mathbb{R}^n), \mathcal{P}(\mathbb{R}^n)$, and $x \in \mathbb{Z}^n$ for $\mathcal{F} = \mathcal{P}(\mathbb{Z}^n)$ Examples $\varphi : \mathbb{R}^n \to \mathbb{R}^k$ polynomial of degree d

either
$$Z(K) = \int_K \varphi(y) \, dy$$
 or $Z(K) = \sum_{y \in K \cap \mathbb{Z}^n} \varphi(y)$

Polynomial valuations

Definition $Z: \mathcal{F} \to \mathbb{R}^k$ is a polynomial valuation of degree at most d if

$$Z(K+x) = Z(K) + \theta(K,x)$$
 for any $K \in \mathcal{F}$

where $\theta(K, x)$ is a polynomial of degree at most d in x where $x \in \mathbb{R}^n$ for $\mathcal{F} = \mathcal{C}(\mathbb{R}^n)$, $\mathcal{P}(\mathbb{R}^n)$, and $x \in \mathbb{Z}^n$ for $\mathcal{F} = \mathcal{P}(\mathbb{Z}^n)$ Examples $\varphi : \mathbb{R}^n \to \mathbb{R}^k$ polynomial of degree d

either
$$Z(K) = \int_K \varphi(y) \, dy$$
 or $Z(K) = \sum_{y \in K \cap \mathbb{Z}^n} \varphi(y)$

Theorem (McMullen, Khovanski, Pukhilov)

If Z is a polynomial valuation of degree at most d, and $\lambda \in \mathbb{N}$, then

$$Z(\lambda P) = \sum_{i=0}^{n+d} Z_i(P) \lambda^i$$

where Z_i homogeneous valuation valuation of degree i, and Z_1 is Minkowski additive; namely, $Z_1(K + L) = Z_1(K) + Z_1(L)$.

Steiner point

Definition $s: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}^n$

$$s(K) = \frac{1}{V_n(B^n)} \int_{S^{n-1}} u h_K(u) du$$

where B^n is the Euclidean unit ball.

Theorem (Schneider (1971))

 $Z: \mathcal{C}(\mathbb{R}^n) \to \mathbb{R}^n$ is Minkowski additive, continuous and rigid motion equivariant valuation iff Z = s.

$\mathsf{SL}(n,\mathbb{R})$ interwining Minkowski valuations

Theorem (Ludwig (2005))

Let $n \geq 2$, and let $Z : \mathcal{P}(\mathbb{R}^n) \to \mathcal{C}(\mathbb{R}^n)$ be Minkowski valuation.

- ▶ Z is $SL(n,\mathbb{R})$ equivariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K) = \alpha(K K)$.
- ▶ Z is $SL(n,\mathbb{R})$ contravariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K) = \alpha \Pi K$.

Remark Z is an $SL(n,\mathbb{R})$ contravariant means

$$Z(\Phi K) = \Phi^{-t}Z(K)$$
 for $\Phi \in \mathrm{SL}(n,\mathbb{R})$

$\mathsf{SL}(n,\mathbb{R})$ interwining Minkowski valuations

Theorem (Ludwig (2005))

Let $n \geq 2$, and let $Z : \mathcal{P}(\mathbb{R}^n) \to \mathcal{C}(\mathbb{R}^n)$ be Minkowski valuation.

- ▶ Z is $SL(n,\mathbb{R})$ equivariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K) = \alpha(K K)$.
- ▶ Z is $SL(n,\mathbb{R})$ contravariant and translation invariant iff there exists $\alpha \geq 0$ such that $Z(K) = \alpha \Pi K$.

Remark Z is an $SL(n,\mathbb{R})$ contravariant means

$$Z(\Phi K) = \Phi^{-t}Z(K)$$
 for $\Phi \in \mathrm{SL}(n,\mathbb{R})$

Remark Haberl, Parapatits (2014) characterized $SL(n,\mathbb{R})$ equivariant Minkowski valuations and $SL(n,\mathbb{R})$ contravariant Minkowski valuations (without translation invariance)

Valuations on lattice polytopes

Definition Lattice point enumerator

$$G(K) = \#(K \cap \mathbb{Z}^n)$$
 for $K \in \mathcal{P}(\mathbb{Z}^n)$.

Theorem (Ehrhart (1967))

For
$$K \in \mathcal{P}(\mathbb{Z}^n)$$
 and $\lambda \in \mathbb{N}$, $G(\lambda K) = \sum_{i=0}^n G_i(K)\lambda^i$.

Valuations on lattice polytopes

Definition Lattice point enumerator

$$G(K) = \#(K \cap \mathbb{Z}^n)$$
 for $K \in \mathcal{P}(\mathbb{Z}^n)$.

Theorem (Ehrhart (1967))

For $K \in \mathcal{P}(\mathbb{Z}^n)$ and $\lambda \in \mathbb{N}$, $G(\lambda K) = \sum_{i=0}^n G_i(K)\lambda^i$.

Theorem (Betke, Kneser (1985))

 $Z: \mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}$ is an $SL(n,\mathbb{Z})$ and translation invariant valuation iff there exist $\alpha_0, \ldots, \alpha_n \in \mathbb{R}$ such that

$$Z(K) = \sum_{i=0}^{n} \alpha_i G_i(K).$$

Definition discrete moment vector $m: \mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}^n$

$$m(K) = \sum \{ y : y \in K \cap \mathbb{Z}^n \}$$

Remark m(K + x) = m(K) + G(K)x, and hence

$$m(\lambda K) = \sum_{i=0}^{n+1} m_i(K) \lambda^i$$
 for $\lambda \in \mathbb{N}$

Definition discrete moment vector $m: \mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}^n$

$$m(K) = \sum \{ y : y \in K \cap \mathbb{Z}^n \}$$

Remark m(K + x) = m(K) + G(K)x, and hence

$$m(\lambda K) = \sum_{i=0}^{n+1} m_i(K) \lambda^i$$
 for $\lambda \in \mathbb{N}$

Definition $\sigma = m_1$ the discrete Steiner point (Minkowski additive) Remark

 $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric

Definition discrete moment vector $m: \mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}^n$

$$m(K) = \sum \{ y : y \in K \cap \mathbb{Z}^n \}$$

Remark m(K + x) = m(K) + G(K)x, and hence

$$m(\lambda K) = \sum_{i=0}^{n+1} m_i(K) \lambda^i$$
 for $\lambda \in \mathbb{N}$

Definition $\sigma = m_1$ the discrete Steiner point (Minkowski additive) Remark

- $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric
- ▶ Possibly $\sigma(K) \notin K$

Definition discrete moment vector $m: \mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}^n$

$$m(K) = \sum \{ y : y \in K \cap \mathbb{Z}^n \}$$

Remark m(K + x) = m(K) + G(K)x, and hence

$$m(\lambda K) = \sum_{i=0}^{n+1} m_i(K) \lambda^i$$
 for $\lambda \in \mathbb{N}$

Definition $\sigma = m_1$ the discrete Steiner point (Minkowski additive) Remark

- $\sigma(K)$ is the centroid if K is a unimodular simplex or centrally symmetric
- ▶ Possibly $\sigma(K) \notin K$

Theorem (K.J. Boroczky, M. Ludwig)

 $Z:\mathcal{P}(\mathbb{Z}^n) \to \mathbb{R}^n$ is $SL(n,\mathbb{Z})$ and translation equivariant valuation iff $Z=\sigma$.

$\mathsf{SL}(n,\mathbb{Z})$ interwining Minkowski valuations on lattice polytopes

Theorem (K.J. Boroczky, M. Ludwig)

Let $Z: \mathcal{P}(\mathbb{Z}^n) \to \mathcal{C}(\mathbb{R}^n)$.

▶ Z is an $SL(n,\mathbb{Z})$ equivariant and translation invariant Minkowski valuation for $n \geq 2$ iff there exist $\alpha, \beta \geq 0$ such that

$$Z(K) = \alpha(K - \sigma(K)) + \beta((-K) - \sigma(-K)).$$

▶ Z is an $SL(n,\mathbb{Z})$ contravariant and translation invariant Minkowski valuation for $n \geq 3$ iff there exists $\alpha \geq 0$ such that $Z(K) = \alpha \Pi K$.

Many more beautiful theorems to Egon and Karoly

