12-neighbour packings of unit balls in \mathbb{E}^3

K. Böröczky and L. Szabó

A packing of unit balls in \mathbb{E}^3 is said to be a 12-neighbour packing if each ball is touched by 12 others.

Face-centred cubic packing

Hexagonal-close packing

Fejes Tóth's conjecture [1969, 1989].

Any 12-neighbour packing of unit balls in \mathbb{E}^3 is composed of hexagonal layers.

T. C. Hales [2012].

A proof of Fejes Tóth's conjecture on sphere packings with kissing number twelve.

eprint arXiv:1209.6043.

Tammes problem for 13 points.

What is the maximum number a_{13} with the property that one can place 13 points on \mathbb{S}^2 so that the spherical distance between any two different points is at least a_{13} ?

Theorem (Musin, Tarasov [2012]).

$$a_{13} = 57.13670307 \dots^{\circ}$$
.

Set $a_0 = 57.13670309^\circ > a_{13}$.

Proposition.

The distance between the centres of any two non-neighbouring balls in a 12-neighbour packing of unit balls in \mathbb{E}^3 is at least

$$4\sin\left(180^{\circ}\left(\frac{60^{\circ}}{a_0} - \frac{5}{6}\right)\right) = 2.51838585\dots$$

Lemma (spherical geometry).

Let *C* be a point on \mathbb{S}^2 and let $0 < \lambda < 1$.

Let C^* be the antipodal of C on \mathbb{S}^2 .

Let P and Q be two points on \mathbb{S}^2 different from C^* and let P' and Q' denote the points of the segments CP and CQ, respectively, on \mathbb{S}^2 for which

$$CP' = \lambda \cdot CP$$
 and $CQ' = \lambda \cdot CQ$.

Then

$$P'Q' \geq \lambda \cdot PQ$$
.

Straightforward calculation shows that the angle of the triangle with side lengths 2, 2 and 2.51838585 ... opposite to its longest side is 78.04071344 ... °.

Set
$$b_0 = 78.04071344^{\circ} < 78.04071344 \dots^{\circ}$$
.
Set $r_0 = (180^{\circ} - b_0)/2 = 50.97964328^{\circ}$.

Proposition.

Let B_0 be a ball in a 12-neighbour packing of unit balls in \mathbb{E}^3 and let \mathcal{P} denote the set of the points at which its 12 neighbours touch B_0 .

Then, regarding \mathcal{P} as a point set on \mathbb{S}^2 ,

- the distance between any two different points of $\mathcal P$ is either 60° or at least b_0 ,
- the radius of any circle whose interior does not contain any point of \mathcal{P} is smaller than r_0 .

Let \mathcal{C} be the configuration of the touching points on a given ball with its neighbours in the face-centred cubic packing.

Let C' be the configuration of the touching points on a given ball with its neighbours in the hexagonal-close packing.

Theorem.

Let \mathcal{P} be a set of 12 points on \mathbb{S}^2 such that

- the distance between any two different points of $\mathcal P$ is either 60° or at least b_0 ,
- the radius of any circle whose interior does not contain any point of \mathcal{P} is smaller than r_0 .

Then \mathcal{P} is congruent to either \mathcal{C} or \mathcal{C}' .

Outline of the proof.

Let $\mathcal D$ be a Delone triangulation of $\mathcal P$.

For each i = 0,1,2,3, a triangle face of \mathcal{D} will be called of type i if it has i sides of length at least b_0 and 3 - i sides of length 60° .

Proposition.

- 1) There are 12 vertices, 30 edges and 20 triangle faces in \mathcal{D} .
- 2) For each i = 0,1,2,3, the area of a triangle face of type i of \mathcal{D} is greater than or equal to the area of a triangle with i sides of length b_0 and 3 i sides of length 60° .
- 3) Each vertex of \mathcal{D} is a common vertex of at most two triangle faces of type 0 of \mathcal{D} .

- 4) There are at most 8 triangle faces of type 0 in \mathcal{D} .
- 5) There is no triangle face of type 3 in \mathcal{D} .
- 6) There is at most 1 triangle face of type 2 in \mathcal{D} .

Let \mathcal{A} be the subgraph of \mathcal{D} formed by the edges (and their endpoints) of length 60° of \mathcal{D} .

Proposition.

- 1) Each vertex of \mathcal{D} is a vertex of \mathcal{A} as well, i.e. the number of vertices of \mathcal{A} is 12.
- 2) The number of edges of \mathcal{A} is 24.
- 3) Each vertex of \mathcal{A} is of degree 4.
- 4) The number of faces of \mathcal{A} is 14.
- 5) Eight faces of \mathcal{A} are regular triangles and six faces of \mathcal{A} are squares.
- 6) Each vertex of \mathcal{A} is adjacent to two regular triangle faces and two square faces of \mathcal{A} .

Case 1.

Each edge of \mathcal{A} is adjacent to one regular triangle face and one square face of \mathcal{A} .

Then \mathcal{A} is congruent to the Archimedean tiling (3,4,3,4).

Thus \mathcal{P} is congruent to \mathcal{C} .

Case 2.

There is an edge of \mathcal{A} adjacent to either two regular triangle faces or two square faces of \mathcal{A} .

Then the great circle incident to this edge consists of six such edges of \mathcal{A} , alternately adjacent to either two regular triangle faces or two square faces of \mathcal{A} .

Thus \mathcal{P} is congruent to \mathcal{C}' .

This completes the proof of the theorem.

Proposition.

Let \mathcal{B} be a 12-neighbour packing of unit balls in \mathbb{E}^3 and consider the Dirichlet-Voronoi cell decomposition of \mathbb{E}^3 associated to \mathcal{B} . Let B_0 be a unit ball in \mathcal{B} .

Then the Dirichlet-Voronoi cell of B_0 is

- either a rhombic dodecahedron
- or a trapezo-rhombic dodecahedron circumscribed about B_0 .

Case 1.

Each Dirichlet-Voronoi cell is a rhombic dodecahedron.

Then \mathcal{B} is uniquely determined and coincides with the densest lattice packing of unit balls which consists of parallel hexagonal layers.

Case 2.

There is a Dirichlet-Voronoi cell which is a trapezo-rhombic dodecahedron.

Then there is a hexagonal layer \mathcal{L} in the Dirichlet-Voronoi cell decomposition consisting of trapezo-rhombic dodecahedra each of which is adjacent to six others along their common trapezoid faces.

Now, the Dirichlet-Voronoi cells adjacent to \mathcal{L} along their common rhombus faces on the same side of \mathcal{L} form

- either a hexagonal layer of rhombic dodecahedra
- or a hexagonal layer of trapezo-rhombic dodecahedra

parallel to \mathcal{L} .

By repeated applications of this argument, one obtains that the Dirichlet-Voronoi cell decomposition consists of parallel hexagonal layers of rhombic dodecahedra and trapezorhombic dodecahedra.

This implies that \mathcal{B} consists of parallel hexagonal layers of unit balls in this case, too.

Thank you for your attention!