On polyhedra induced by point sets and on their triangulations.

Andras Bezdek

Auburn University, Auburn, AL

Happy 60th birthday Egon and Karoly!

On a variant of the 'tic - tac - toe'

Second player:

5 - OXgame

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

The first player who gets 5 consecutive signs in a row (column or in a diagonal resp.) winns.

)
ノ

Linear OX

Second player:

1st player cannot have three consecutive O's.

2nd player: tries to block 1st player

from right, then from left ...

Linear OX

Second player:

1st player cannot have three consecutive O's.

2nd player: tries to block 1st player from right, then from left ...

Linear OX

Second player:

1st player cannot have three consecutive O's.

2nd player: tries to block 1st player from right, then from left ...

12 OX game

Second player:

2nd player's can prevent 1st player from getting 12 consecutive O's:

The second player prepars the gome board with a special pattern.

n - OX game on the hexagonal grid

n - OX game on the hexagonal grid

Players alternate placing thir own symbols pieces (tipically O and X) on the hexagonal grid. The first player to get n consecutive symbols in one of the 6 symmetry line directions is the winner.

18- **OX** game.

2nd player can be prevented from winning the 18 - OX game.

18- **OX** game.

1st player can be prevented from winning the 18 - OX game.

2nd problem

Given n points in the space (not all on a plane) find a polyhedron whose vertices are exactly the given points.

Choose a face of the convex hull.

Choose a center and project radially the rest of the points so that...

Lemma: There is a triangualtion without using diagonals....

Pull back the triangles.

Joint work with Osman Yardimci

Polygonalization: started with Hugo Steinhous (1964), there are n pints lying in the plane no three on a line.....

Polyhedralization: started with B. Grunbaum (1994) and continued by many others, see Hurtado, Toussaint Trias, Agarwal, Demaine, Mitchel, Sharir **etc.** there are n points in the space, no for coplanar.....

Several methods are known:

hinge polyhedralization orange polyhedralization cone polyhedralization monotonic polyhedralization

$$n = 2$$

Fan polygonalization Ron Graham 1994.

Monotonic polygonalization. Branko Grunbaum, 1994

3D: n points are given, no 4 coplanar.

Choose an edgae of the convex hull, and order the remaining points.

W. Kuperberg's example (2011) of a polyhedron with a point inside which does not see any of the vertices

Modified example of Kuperberg.

A.B., B. Carrigan (2014)

Key idea: Instead of triangulations tilings were studied (more general theorem was proved)

Lajos Szilassi:

Image from Lajos Szilasi

Connection to surface reconstruction: Polyhedronize two parallel simple simple polygons

Problem Toussaint at al: Polyhedronize given set of n points and a simple polygon

Joint work with Osman Yardimci: study variations of this problem.

O'Rourke at all (2002)

Image: Jeff Ericson

It is possible that a point outside of the convex hull of the polyhedron does not see any complete edge or any coplete face.

Coloured polygonalization/ polyhedralization Long alternating path problem 3

Erdos conjecture:

$$maxvertexnumber \le \frac{3n}{2} + 2$$

Kynel, Pach, Toth (2006):

Thm: $maxvertexno \ge n + c\sqrt{\frac{n}{\log n}}$

Constr: $maxvertexno \leq \frac{4n}{3} + c\sqrt{n}$

Merino, Saazar, Urrutia (2006):

Gave an algorithm to decide if alternating path exist in case points are in convex position. If the red and bue points are separated by a line such path exists.

Pair given points (n) to sides of a given n-gon.

Authors:	Dim:	Δ's cannot overlap	Δ's must cover P
		P	P
Bogomolnaya,Nazarov, Rukshin (1988)	2		Points are in P: Thm: covering exists
A.Bezdek (2001)	2,3	Points are in P: Thm: n Δ's exist Points-general pos.: Thm: n/3 Δ's exist, Conj.: n/2 Δ's exist,	Points, general pos.: Thm: covering exist
N.Karasev (2002)	n	Thm: Same as above in any dimension	Thm: Same as above in any dimension