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Classical billiard trajectories
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Classical ard trajectories

Reflection rule
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Classical billiard trajectories

Reflection rule

|PX| 4+ |QX]| has a local extremum at this point.
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Classical billiard trajectories
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Classical billiard trajectories
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Billiard

Generally, we consider a convex body K C R" as a billiard table.

We are interested in existence of classical (i.e. passing only through smooth points
of the boundary OK) closed billiard trajectories in the body K.

We say m-bouncing, or m-periodic, about closed trajectory with m boundary
reflections.
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Classical billiard trajectories

Existence of trajectories in smooth bodies

Here K is smooth and strictly convex.

e [G. D. Birkhoff, 1920°] If K C R? then for any period m and any rotation
number p, co-prime with m, there are at least two distinct closed billiard
trajectories.
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Classical billiard trajectories

Existence of trajectories in smooth bodies

Here K is smooth and strictly convex.

e [G. D. Birkhoff, 1920°] If K C R? then for any period m and any rotation
number p, co-prime with m, there are at least two distinct closed billiard
trajectories.

o [M. Farber, S. Tabachnikov, 2002] If K C R", n > 3, m is odd, then there are
at least |log,(m — 1)| + n — 1 distinct closed billiard trajectories with m
bounces. For generic K there are at least (m — 1)(n — 1) such trajectories.
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Classical billiard trajectories

Existence of trajectories in smooth bodies

Here K is smooth and strictly convex.

e [G. D. Birkhoff, 1920°] If K C R? then for any period m and any rotation
number p, co-prime with m, there are at least two distinct closed billiard
trajectories.

o [M. Farber, S. Tabachnikov, 2002] If K C R", n > 3, m is odd, then there are
at least |log,(m — 1)| + n — 1 distinct closed billiard trajectories with m
bounces. For generic K there are at least (m — 1)(n — 1) such trajectories.

o [R. Karasev, 2008] If K C R", n > 3, m is odd prime, then there are at least
(m —1)(n — 2) 4 2 distinct closed billiard trajectories with m bounces.
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Classical billiard trajectories

Existence of trajectories in non-smooth bodies

In an acute triangle there is a classical closed billiard trajectory.
The idea goes back to H. Schwarz (1890)
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Classical billiard trajectories

Existence of trajectories in non-smooth bodies

[R. E. Schwartz, 2009] In a triangle with angles < 100° there is a classical closed
billiard trajectory.
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Classical billiard trajectories

Existence of trajectories in non-smooth bodies

Definition

We say that a non-smooth point g € 0K satisfies the acuteness condition if the
tangent cone Tk(q) can be represented as the orthogonal product

Tk(q) = F x Tk, where T* is a k-dimensional cone with property that for all
points a, b € T* the inequality a/q\b < 7/2 holds, and F is an (n — k)-dimensional
linear subspace orthogonal to T*.
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We say that a non-smooth point g € 0K satisfies the acuteness condition if the
tangent cone Tk(q) can be represented as the orthogonal product

Tk(q) = F x Tk, where T* is a k-dimensional cone with property that for all
points a, b € T* the inequality a/q\b < 7/2 holds, and F is an (n — k)-dimensional
linear subspace orthogonal to T*.

Definition

If all non-smooth points of OK satisfy the above acuteness condition we call K an
acute body.
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Classical billiard trajectories

Existence of trajectories in non-smooth bodies

Definition

We say that a non-smooth point g € 0K satisfies the acuteness condition if the
tangent cone Tk(q) can be represented as the orthogonal product

Tk(q) = F x Tk, where T* is a k-dimensional cone with property that for all
points a, b € T* the inequality a/q7:> < 7/2 holds, and F is an (n — k)-dimensional
linear subspace orthogonal to T*.

Definition

If all non-smooth points of OK satisfy the above acuteness condition we call K an
acute body.

Theorem (Akopyan, B., 2015+)

In an acute convex body K € R" there exists a closed classical billiard trajectory
with no more than n+ 1 bounces.
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Classical billiard trajectories

Existence of trajectories in non-smooth bodies

Corollary (Akopyan, B., 2015+)

In a simplex with all acute dihedral angles (e.g., a simplex close to regular) there
exists a closed classical billiard trajectory with n + 1 bounces.
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Bounce at corners

Generalized (in contrast with classical) trajectories CAN pass through non-smooth
points.
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Bezdeks' technique

Bounce at corners

Generalized (in contrast with classical) trajectories CAN pass through non-smooth
points.

Alexey Balitskiy Closed billiard trajectories in acute bodies Veszprém, July 3, 2015 15 / 35



Bezdeks' technique

Bounce at corners

That is OK.
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Bezdeks' technique

Question

What can be said about the shortest closed billiard trajectory in a convex body K?
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Bezdeks' technique

Theorem (Karoly Bezdek and Daniel Bezdek, 2009)

Let K be a convex body in R". Then any of the shortest (Euclidean) generalized
closed billiard trajectories in K is of period at most n+ 1.
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Bezdeks' tech
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Abstract In this paper we prove that any convex bady of the d-dimensional Euclidean
space (d = 2) possesses at least one shortest generalized billiard trajectory moreover, any
of its shortest generalized billiard trajectories is of period at most d + 1. Actually, in the
Euclidean plane we improve this theorem as follows. A disk-polygon with parameter r > 0
is simply the intersection of finitely many (closed) circular disks of radii r, called generating
sks, having some interior point in common in the Euclidean plane. Also, we say that a
isk-polygon with parameter r > 0 is a fat disk-polygon if the pairwise distances between
the centers of its generating disks are at most r. We prove that any of the shortest generalized
billiard trajectories of an arbitrary fat disk-polygon is a 2-periodic one. Also, we give a
proof of the analogue result for £-rounded disk-polygons obtained from fat disk-polygons by
partial answers to
the very recent question raised by S. Zelditch on characterizing convex bodies whose shortest
periodic billiard trajectories are of period 2.

rounding them off using circular disks of radii # > 0. Our theorems giv

Keywords (fat) Disk-polygon - (generalized) Billiard trajectory - Shortest (generalized)
‘billiard trajectory

Math ics Subject Classil jon (2000)  52A40 - 52C99
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Bezdeks' technique

Corollary
Any shortest billiard trajectory in the body of constant width 1 in the plane has
period 2.

204 Geom Dedicata (2009) 141:197-206

Fig.2 Constructing diskA +(P)
from diskAr (P)

Fig.3 Constructing P* from P
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Bezdeks' technique

Bezdeks' trajectories

Let V be an n-dimensional vector space, K C V, and define

Pm(K) = {(qla EERE qm) :
{q1,...,qm} does not fit into aK + t with « € (0,1), t € V}.

Define the length of the closed polygonal line

m
Hai,. ., qmt = Z |giv1 — qil,
i-1

where indices are always modulo m.
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Bezdeks' technique

Theorem

For a convex body K € V, the length of the shortest generalized closed billiard
trajectory in K equals

§(K) = min  min ., {(P).

Moreover, the minimum is attained at m < n + 1.
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|deas of the proof

K) = mi i P).
§(K) = min  min (P)
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|deas of the proof

K) = mi i P).
0= 1 Pl 1P

@ The inner minimum is attained (due to compactness argument).
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|deas of the proof

K) = mi i P).
§(K) = min  min (P)

@ The inner minimum is attained (due to compactness argument).

@ We can consider the outer minimum only for number of bounces m < n+1
(due to Carathéodory's, or, equivalently, Helly's theorem).
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|deas of the proof

K)=min min ¢(P).
§(K) m2 Pe?lm(K) (P)
@ The inner minimum is attained (due to compactness argument).

@ We can consider the outer minimum only for number of bounces m < n+1
(due to Carathéodory's, or, equivalently, Helly's theorem).

@ We consider minimizer delivering £(K) and show that it can be translated to
obtain generalized billiard trajectory.
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|deas of the proof

K)=min min ¢(P).
§(K) m2 Pe?lm(K) (P)
@ The inner minimum is attained (due to compactness argument).

@ We can consider the outer minimum only for number of bounces m < n+1
(due to Carathéodory's, or, equivalently, Helly's theorem).

@ We consider minimizer delivering £(K) and show that it can be translated to
obtain generalized billiard trajectory.

@ Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
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Bezdeks' technique

Particular case of Bezdeks' lemma

Lemma (K. Bezdek, D. Bezdek, 2009)

Suppose the points q1, . .., qm satisfy the following condition: There exist affine

halfspaces Hy", ..., H} with outer normals n1, ..., nm, such that

Q@ q €OH fori=1,...,m;
Q@ KCHf fori=1,....m;
@ O0€cconv{ny,...,nn}.

Then the polygonal line with vertices qu, ..., qm (and maybe with some other

vertices) cannot be translated into int K.
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Bezdeks' technique

< O
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Bezdeks' technique

< O
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Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.

@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K"
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Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.

@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
From the reflection rule for a billiard trajectory {q,...,qm} we have
piv1 — pi = —Aink(qi), Ai > 0.

qdi — qgi-1

Here we denote the momenta by pj = ———.
lgi — qi-1]
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Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.

@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
From the reflection rule for a billiard trajectory {q,...,qm} we have
piv1 — pi = —Aink(qi), Ai > 0.

qdi — qgi-1
lgi — qi—1] -

Z )\,-nK(q,-) =0.

Here we denote the momenta by p; =

Therefore
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@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
From the reflection rule for a billiard trajectory {q,...,qm} we have
piv1 — pi = —Aink(qi), Ai > 0.

qdi — qgi-1
lgi — qi—1] -

Z )\,-nK(q,-) =0.

Here we denote the momenta by p; =

Therefore

We check conditions of Bezdeks' lemma:
Q g €OH fori=1,....,m;
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Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.
@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K"
From the reflection rule for a billiard trajectory {q,...,qm} we have

pi+1 — pi = —Aink(gi), Ai > 0.

Here we denote the momenta by p; = i~ g1
lgi — gi-1l o
Therefore \
Z)\;HK(Q,’) =0.
i

We check conditions of Bezdeks' lemma:
Q g €OH fori=1,....,m;
Q@ KcC H,.+ fori=1,...,m

Alexey Balitskiy Closed billiard trajectories in acute bodies Veszprém, July 3, 2015 27 / 35



Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.

@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
From the reflection rule for a billiard trajectory {q,...,qm} we have
piv1 — pi = —Aink(qi), Ai > 0.

qdi — qgi-1
lgi — qi—1] -

Z )\,’HK(q;) =0.

Here we denote the momenta by p; =

Therefore

We check conditions of Bezdeks' lemma:
Q g €OH fori=1,....,m;
Q@ KCHffori=1,....m;
@ 0 € conv{ny,...,nm}.
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Bezdeks' technique

Let’s prove last step of Bezdeks' theorem.

@ “Finally, any billiard trajectory indeed cannot be translated into the interior of
K.
From the reflection rule for a billiard trajectory {q,...,qm} we have
piv1 — pi = —Aink(qi), Ai > 0.

qi — qi-1
|CIi - qi71\

Z )\,-nK(q,-) =0.

Here we denote the momenta by p; =

Therefore

We check conditions of Bezdeks' lemma:
Q g €OH fori=1,....,m;
Q@ KcC H,.+ fori=1,...,m
@ 0 € conv{ny,...,nm}.

The lemma implies that the set {q1,...,qgm} cannot be translated into int K.
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Main theorem

Definition

We say that a non-smooth point g € 0K satisfies the acuteness condition if the
tangent cone Tk(q) can be represented as the orthogonal product

Tk(q) = F x Tk, where T* is a k-dimensional cone with property that for all
points a, b € T* the inequality a/q\b < 7/2 holds, and F is an (n — k)-dimensional
linear subspace orthogonal to T*.

Definition

If all non-smooth points of OK satisfy the above acuteness condition we call K an
acute body.

Theorem (Akopyan, B., 2015+)

In an acute convex body K € R" there exists a closed classical billiard trajectory
with no more than n+ 1 bounces.
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Two-dimensional case

Theorem

In an acute convex disc K € R? there exists a closed classical billiard trajectory
with 2 or 3 bounces.
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Two-dimensional case

Theorem

In an acute convex disc K € R? there exists a closed classical billiard trajectory
with 2 or 3 bounces.

Assume that point g € 0K is non-smooth. Let a — g — b be the

part of the
trajectory.
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Two-dimensional case

Theorem

In an acute convex disc K € R? there exists a closed classical billiard trajectory
with 2 or 3 bounces.

Assume that point g € 0K is non-smooth. Let a — g — b be the part of the
trajectory.

Reflect a and b in support lines H; and H, respectively and obtain point 2’ and b'.
Z(Hi, H2) < 5 = Zdgb' <.
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Two-dimensional case

Theorem

In an acute convex disc K € R? there exists a closed classical billiard trajectory
with 2 or 3 bounces.

Assume that point g € 0K is non-smooth. Let a — g — b be the part of the
trajectory.

Reflect a and b in support lines H; and H, respectively and obtain point 2’ and b'.
(H,H) < = Jadgbl <.

lag1| +1q1g2| +[q2b| = |a'q1| + |q1q2| + |q2b'| = [a'b'| < |a’q|+|qb'| = |aq|+|qgb.
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Lemma

A simplex with all acute dihedral angles satisfies the acuteness condition.
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Lemma
A simplex with all acute dihedral angles satisfies the acuteness condition.

The proof relies on a theorem of Fiedler (1957), stating the following: If a simplex
has all acute dihedral angles then any face of such a simplex also has only acute

dihedral angles.
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Lemma

A simplex with all acute dihedral angles satisfies the acuteness condition.

The proof relies on a theorem of Fiedler (1957), stating the following: If a simplex
has all acute dihedral angles then any face of such a simplex also has only acute
dihedral angles.

Corollary

In a simplex with all acute dihedral angles (e.g., a simplex close to regular) there
exists a closed classical billiard trajectory with n+ 1 bounces.
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Theorem

If the shortest closed generalized trajectory in K C R" has precisely n+ 1
bounces, then it is classical.
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Theorem

If the shortest closed generalized trajectory in K C R" has precisely n+ 1
bounces, then it is classical.

Assume the contrary: a — g — b is a fragment of the shortest trajectory near
non-smooth point g € K.
Note that a, b, g do not lie on the same line.
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Theorem

If the shortest closed generalized trajectory in K C R" has precisely n+ 1
bounces, then it is classical.

Assume the contrary: a — g — b is a fragment of the shortest trajectory near
non-smooth point g € K.
Note that a, b, g do not lie on the same line.

Consider the support line ¢ orthogonal to bisector of a/q\b at the point g. It can be
slightly rotated remaining support at the point g. We find point § € £ such that
|G —al =[G — bl
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Theorem

If the shortest closed generalized trajectory in K C R" has precisely n+ 1
bounces, then it is classical.

Assume the contrary: a — g — b is a fragment of the shortest trajectory near
non-smooth point g € K.
Note that a, b, g do not lie on the same line.

Consider the support line ¢ orthogonal to bisector of a/q\b at the point g. It can be
slightly rotated remaining support at the point g. We find point § € £ such that
|G —al =[G — b|.

1§ —al +1g — bl < [q—al+[q— bl
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Non-Euclidean billiards

We use possibly non-standard notation for a norm || - || with T lying in the dual
space: |[q||T = max(p, q).

KcVv TCVv”

In other words, T° ={q € V : (p,q) <1Vpe T} is the unit body of the norm
[
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Non-Euclidean billiards

We use possibly non-standard notation for a norm || - || with T lying in the dual
space: |[q||T = max(p, q).

KcV Tcv:
In other words, T° ={q € V : (p,q) <1Vpe T} is the unit body of the norm

-7
Note that T need not be symmetric, so in general ||q|| # || — g
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Non-Euclidean billiards

Billiards are defined as before.

= Vllq %0

2= Vg2 x°

vz = V||p2lre

The reflection rule: pp — p1 = —Ank(q1), A >0.
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Non-Euclidean billiards

Billiards are defined as before.

= Vllq %0

2= Vg2 x°

v2 = V||pz||r°
The reflection rule: pp — p1 = —Ank(q1), A >0.

Bezdeks' characterization still holds!
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Non-Euclidean billiards

Theorem

Suppose the length is measured using the norm with strictly convex unit body T°
such that T is strictly convex too (in other words, T is smooth and strictly
convex).

If the shortest closed generalized trajectory in K C R" has n+ 1 bounces, then it
is classical, that is, it does not pass through non-smooth points of OK.

Alexey Balitskiy Closed billiard trajectories in acute bodies Veszprém, July 3, 2015 34 / 35



Thank you for your attention!
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