Flag－transitive biplanes，what do we know？

EOR，P．R．García－Vázquez，C．E．Praeger

GeoSym，Veszprém，June 2015.

Definitions \& Examples

Definition

A biplane is a $(v, k, 2)$-symmetric design, that is:

Definitions \＆Examples

Definition

A biplane is a $(v, k, 2)$－symmetric design，that is：
－It has a set P of points，a set B of blocks，and an incidence relation such that：

Definitions \& Examples

Definition

A biplane is a $(v, k, 2)$-symmetric design, that is:

- It has a set P of points, a set B of blocks, and an incidence relation such that:
- $|P|=|B|=v$,

Definitions \＆Examples

Definition

A biplane is a $(v, k, 2)$－symmetric design，that is：
－It has a set P of points，a set B of blocks，and an incidence relation such that：
－$|P|=|B|=v$ ，
－Every block is incident with exactly k points，and

Definitions \＆Examples

Definition

A biplane is a $(v, k, 2)$－symmetric design，that is：
－It has a set P of points，a set B of blocks，and an incidence relation such that：
－$|P|=|B|=v$ ，
－Every block is incident with exactly k points，and
－Every（unordered）pair of points is incident with exactly 2 blocks．

Definitions \& Examples
 Fano plane

Nonexample

Definitions \& Examples Fano plane

Nonexample

Flag-transitive biplanes, what do we know?

Definitions \& Examples

Fano's complement

Example

(7, 4, 2)-biplane

Flag-transitive biplanes, what do we know?

Definitions \＆Examples

Flag－transitivity

Definition

－A flag in a biplane D is an incident point－block ordered pair．

Definitions \＆Examples

Definition

－A flag in a biplane D is an incident point－block ordered pair．
－A group $G \leq \operatorname{Aut}(D)$ is flag－transitive if it has exactly one orbit on the set of flags of D ．

Definitions \＆Examples
 Projective planes

Definition

A finite projective plane is a $(v, k, 1)$－symmetric design，with $v=n^{2}+n+1$ and $k=n+1$ ，（where n is the order of the design）．

Definitions \＆Examples
 Projective planes

Definition

A finite projective plane is a $(v, k, 1)$－symmetric design，with $v=n^{2}+n+1$ and $k=n+1$ ，（where n is the order of the design）．
Such a design has $(n+1)\left(n^{2}+n+1\right)=v k$ flags．

Classification
 Projective planes

Theorem (W. Kantor 1987)

If D is a ($v, k, 1$)-symmetric design of order n and
$G \leq \operatorname{Aut}(D)$ is flag transitive, then either:

Classification
 Projective planes

Theorem (W. Kantor 1987)

If D is a $(v, k, 1)$-symmetric design of order n and
$G \leq \operatorname{Aut}(D)$ is flag transitive, then either:
(1) D is Deasrguesian and $\operatorname{PSL}(3, n) \triangleleft G$, or

Classification
 Projective planes

Theorem（W．Kantor 1987）

If D is a $(v, k, 1)$－symmetric design of order n and
$G \leq A u t(D)$ is flag transitive，then either：
（1）D is Deasrguesian and $\operatorname{PSL}(3, n) \triangleleft G$ ，or
（2）G is a Frobenius group which acts regularly on the flags of D and v is prime，$\left(\right.$ so $\left.|G|=(n+1)\left(n^{2}+n+1\right)\right)$ ．

Classification
 Projective planes

Theorem（W．Kantor 1987）
If D is a（ $v, k, 1$ ）－symmetric design of order n and
$G \leq A u t(D)$ is flag transitive，then either：
（1）D is Deasrguesian and $\operatorname{PSL}(3, n) \triangleleft G$ ，or
（2）G is a Frobenius group which acts regularly on the flags of D and v is prime，$\left(\right.$ so $\left.|G|=(n+1)\left(n^{2}+n+1\right)\right)$ ．

No non－Desarguesian examples are known，and it has been long conjectured that there are none（Higman and McLaughlin）．

Classification
 Projective planes

[^0]
Classification

Biplanes

Conjecture

For any given value of $\lambda>1$, there are finitely many (v, k, λ)-symmetric designs.

Classification
 Biplanes

The only known examples of biplanes are the following:

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT,

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,
(3) The unique $(11,5,2)$ Hadamard design FT,

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,
(3) The unique $(11,5,2)$ Hadamard design FT,
(4) The three non-isomorphic $(16,6,2)$ biplanes two FT,

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,
(3) The unique $(11,5,2)$ Hadamard design FT,
(4) The three non-isomorphic $(16,6,2)$ biplanes two FT,
(5) The four non-ismorphic $(37,9,2)$ biplanes one FT,

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT ,
(3) The unique $(11,5,2)$ Hadamard design FT,
(4) The three non-isomorphic $(16,6,2)$ biplanes two FT,
(5) The four non-ismorphic $(37,9,2)$ biplanes one FT,
(6) The five $(56,11,2)$ biplanes, and

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,
(3) The unique $(11,5,2)$ Hadamard design FT,
(4) The three non-isomorphic $(16,6,2)$ biplanes two FT,
(5) The four non-ismorphic $(37,9,2)$ biplanes one FT,
(0) The five $(56,11,2)$ biplanes, and
(7) Two known $(79,13,2)$.

Classification

Biplanes

The only known examples of biplanes are the following:
(1) The unique (trivial) $(4,3,2)$ biplane FT ,
(2) The unique $(7,4,2)$ complement of the Fano plane FT,
(3) The unique $(11,5,2)$ Hadamard design FT,
(4) The three non-isomorphic $(16,6,2)$ biplanes two FT,
(5) The four non-ismorphic $(37,9,2)$ biplanes one FT,
(0) The five $(56,11,2)$ biplanes, and
(7) Two known $(79,13,2)$.

There are no biplanes with $k=7,8,10$, or 12 .

Classification

Biplanes

Problem

Classify flag－transitive biplanes．

Classification
 Biplanes

Problem

Classify flag-transitive biplanes.
Approach:

Classification

Biplanes

Problem

Classify flag-transitive biplanes.
Approach:
(1) For a biplane D, consider $\operatorname{Aut}(D)$.

Classification

Biplanes

Problem

Classify flag-transitive biplanes.
Approach:
(1) For a biplane D, consider $\operatorname{Aut}(D)$.
(2) If $G \leq \operatorname{Aut}(D)$ is flag-transitive, then it is transitive on P (the points of D).

Classification

Biplanes

Problem

Classify flag-transitive biplanes.
Approach:
(1) For a biplane D, consider $\operatorname{Aut}(D)$.
(2) If $G \leq \operatorname{Aut}(D)$ is flag-transitive, then it is transitive on P (the points of D).
(3) G is imprimitive if it leaves invariant a non-trivial partition of P.

Classification
 Biplanes

Problem

Classify flag－transitive biplanes．
Approach：
（1）For a biplane D ，consider $\operatorname{Aut}(D)$ ．
（2）If $G \leq \operatorname{Aut}(D)$ is flag－transitive，then it is transitive on P （the points of D ）．
（3）G is imprimitive if it leaves invariant a non－trivial partition of P ．
（4）Otherwise it is primitive，（ G leaves no non－trivial partition of P invariant）．

Results

Theorem（H．Davies，1987）

Given any λ ，if a (v, k, λ)－symmetric design admits a flag－transitive，imprimitive automorphism group，then k is bounded．

Results

Theorem (H. Davies, 1987)

Given any λ, if a (v, k, λ)-symmetric design admits a flag-transitive, imprimitive automorphism group, then k is bounded.

Theorem (EOR, 2005)

If D is a (v, k, λ)-symmetric design D with an imprimitive, flag-transitive automorphism group G, then one of the following holds:

Results

Theorem (H. Davies, 1987)

Given any λ, if a (v, k, λ)-symmetric design admits a flag-transitive, imprimitive automorphism group, then k is bounded.

Theorem (EOR, 2005)

If D is a (v, k, λ)-symmetric design D with an imprimitive, flag-transitive automorphism group G, then one of the following holds:

- $(v, k, \lambda)=\left(\lambda^{2}(\lambda+2), \lambda(\lambda+1), \lambda\right)$, or

Results

Theorem（H．Davies，1987）

Given any λ ，if a (v, k, λ)－symmetric design admits a flag－transitive，imprimitive automorphism group，then k is bounded．

Theorem（EOR，2005）

If D is a (v, k, λ)－symmetric design D with an imprimitive， flag－transitive automorphism group G ，then one of the following holds：
－$(v, k, \lambda)=\left(\lambda^{2}(\lambda+2), \lambda(\lambda+1), \lambda\right)$ ，or
－$k \leq \lambda(\lambda-2)$ ．

Results

－C．E．Praeger and S．Zhou， 2006 have improved the bounds for k in terms of λ ，and completed a table of admissible parameters (v, k, λ) with $2 \leq \lambda \leq 10$ for symmetric designs admitting a flag－transitive automorphism group imprimitive on points．

Results

- C. E. Praeger and S. Zhou, 2006 have improved the bounds for k in terms of λ, and completed a table of admissible parameters (v, k, λ) with $2 \leq \lambda \leq 10$ for symmetric designs admitting a flag-transitive automorphism group imprimitive on points.
- In particular, for biplanes, the only admissible parameters are (16, 6, 2).

Results

－C．E．Praeger and S．Zhou， 2006 have improved the bounds for k in terms of λ ，and completed a table of admissible parameters (v, k, λ) with $2 \leq \lambda \leq 10$ for symmetric designs admitting a flag－transitive automorphism group imprimitive on points．
－In particular，for biplanes，the only admissible parameters are（16，6，2）．
－There are two $(16,6,2)$ biplanes arising from difference sets in $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$ and \mathbb{Z}_{2}^{4} ，both admitting a flag－transitive， imprimitive automorphism group G with $G_{0} \cong S_{4}$ ．

Results

Primitivity

- The O'Nan-Scott Theorem classifies primitive groups:

Results

Primitivity

- The O'Nan-Scott Theorem classifies primitive groups:
- Simple diagonal,

Results

Primitivity

－The O＇Nan－Scott Theorem classifies primitive groups：
－Simple diagonal，
－Product action，

Results

Primitivity

- The O'Nan-Scott Theorem classifies primitive groups:
- Simple diagonal,
- Product action,
- Wreath product,

Results

Primitivity

－The O＇Nan－Scott Theorem classifies primitive groups：
－Simple diagonal，
－Product action，
－Wreath product，
－Affine

Results

Primitivity

－The O＇Nan－Scott Theorem classifies primitive groups：
－Simple diagonal，
－Product action，
－Wreath product，
－Affine
－Almost simple．

Results

Primitivity

Theorem（EOR，2008）

If D is a (v, k, λ)－symmetric design with $(2 \leq \lambda \leq 4)$ admitting a flag－transitive，primitive automorphism group G ， then G is of almost simple or affine type．

Results

Primitivity

Theorem (EOR, 2008)

If D is a (v, k, λ)-symmetric design with $(2 \leq \lambda \leq 4)$ admitting a flag-transitive, primitive automorphism group G, then G is of almost simple or affine type.

Theorem (EOR, 2007)

If D is a biplane with a primitive, flag-transitive automorphism group G of almost simple type, then it is one of the following, (and is unique up to isomorphism):

Results

Primitivity

Theorem (EOR, 2008)

If D is a (v, k, λ)-symmetric design with $(2 \leq \lambda \leq 4)$ admitting a flag-transitive, primitive automorphism group G, then G is of almost simple or affine type.

Theorem (EOR, 2007)

If D is a biplane with a primitive, flag-transitive automorphism group G of almost simple type, then it is one of the following, (and is unique up to isomorphism):

- $(7,4,2)$ and $G \leq P S L_{2}(7)$ (this is Fano's complement).

Results

Primitivity

Theorem (EOR, 2008)

If D is a (v, k, λ)-symmetric design with $(2 \leq \lambda \leq 4)$ admitting a flag-transitive, primitive automorphism group G, then G is of almost simple or affine type.

Theorem (EOR, 2007)

If D is a biplane with a primitive, flag-transitive automorphism group G of almost simple type, then it is one of the following, (and is unique up to isomorphism):

- $(7,4,2)$ and $G \leq P S L_{2}(7)$ (this is Fano's complement).
- $(11,5,2)$ and $G \leq P S L_{2}(11)$ (this is a Hadamard design).

Results

Primitivity

Theorem (EOR, 2005)

If D is a biplane with a flag-transitive, primitive automorphism group G of affine type, then one of the following conditions holds:

Results

Primitivity

Theorem（EOR，2005）

If D is a biplane with a flag－transitive，primitive automorphism group G of affine type，then one of the following conditions holds：
－D has parameters $(16,6,2)$ ，or

Results

Primitivity

Theorem（EOR，2005）

If D is a biplane with a flag－transitive，primitive automorphism group G of affine type，then one of the following conditions holds：
－D has parameters $(16,6,2)$ ，or
－$G \leq A \Gamma L_{1}(q)$ for some odd prime power q ．

Results

Primitivity

Theorem (EOR, 2005)

If D is a biplane with a flag-transitive, primitive automorphism group G of affine type, then one of the following conditions holds:

- D has parameters $(16,6,2)$, or
- $G \leq A \Gamma L_{1}(q)$ for some odd prime power q.

The $(37,9,2)$ biplane is an example of the one-dimensional affine case.

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag－transitive automorphism group G ，then at least one of the following holds：

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag-transitive automorphism group G, then at least one of the following holds:

- (v, k) and G are as in the following list:
(1) $(7,4)$ and $G \leq P S L_{2}(7)$

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag-transitive automorphism group G, then at least one of the following holds:

- (v, k) and G are as in the following list:
(1) $(7,4)$ and $G \leq P S L_{2}(7)$
(2) $(11,5)$ and $G \leq P S L_{2}(11)$

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag-transitive automorphism group G, then at least one of the following holds:

- (v, k) and G are as in the following list:
(1) $(7,4)$ and $G \leq P S L_{2}(7)$
(2) $(11,5)$ and $G \leq P S L_{2}(11)$
(3) $(16,6)$ and $G \leq 2^{4}$. S_{6}

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag－transitive automorphism group G ，then at least one of the following holds：
－(v, k) and G are as in the following list：
（1）$(7,4)$ and $G \leq P S L_{2}(7)$
（2）$(11,5)$ and $G \leq P S L_{2}(11)$
（3）$(16,6)$ and $G \leq 2^{4}$ ．S_{6}
（4）$(16,6)$ and $G \leq\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)\left(S_{4} .2\right)$

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag－transitive automorphism group G ，then at least one of the following holds：
－(v, k) and G are as in the following list：
（1）$(7,4)$ and $G \leq P S L_{2}(7)$
（2）$(11,5)$ and $G \leq P S L_{2}(11)$
（3）$(16,6)$ and $G \leq 2^{4}$ ．S_{6}
（4）$(16,6)$ and $G \leq\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)\left(S_{4} .2\right)$
（5）$(37,9)$ and $G \leq \mathbb{Z}_{37} \cdot \mathbb{Z}_{9}$

Results

Primitivity

Corollary

If D is a $(v, k, 2)$ biplane admitting a flag-transitive automorphism group G, then at least one of the following holds:

- (v, k) and G are as in the following list:
(1) $(7,4)$ and $G \leq P S L_{2}(7)$
(2) $(11,5)$ and $G \leq P S L_{2}(11)$
(3) $(16,6)$ and $G \leq 2^{4} . S_{6}$
(4) $(16,6)$ and $G \leq\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)\left(S_{4} .2\right)$
(5) $(37,9)$ and $G \leq \mathbb{Z}_{37} \cdot \mathbb{Z}_{9}$
- $G \leq A \Gamma L_{1}(q)$ for some odd prime power q.

Results

Lemma (EOR, 2005)
If D is a non-trivial $\left(2^{b}, k, 2\right)$-biplane, then $b=4$.

Results

Lemma（EOR，2005）

If D is a non－trivial $\left(2^{b}, k, 2\right)$－biplane，then $b=4$ ．
Corollary
If D is a（ $p^{r}, k, 2$ ）－biplane with p is prime，then either $p^{r}=16$ or p is odd．

Results

Lemma（EOR，2005）

If D is a non－trivial $\left(2^{b}, k, 2\right)$－biplane，then $b=4$ ．

Corollary

If D is a $\left(p^{r}, k, 2\right)$－biplane with p is prime，then either $p^{r}=16$ or p is odd．

Lemma（P．Cameron，2002）

Let G be an affine automorphism group of a（ $v, k, 2$ ）－biplane， with $v=p^{r}$ ，p prime．Suppose $G=T . H$ ，where T is the translation group of $V(r, p)$ acting regularly on the points of the biplane，and $H \leq G L(r, p)$ ．If p is odd then $|G|$ is odd．

Results

Theorem（EOR，C．Praeger，2009）

Let D be a $(q, k, 2)$－biplane with $q=p^{r}$ an odd prime power admitting a flag－transitive automorphism group of affine type $G \leq А Г L(1, q)$ ．Then p does not divide $\left|G_{0}\right|$ ，and G acts regularly on the flags of D ．

Results

Theorem（EOR，C．Praeger，2009）

Let D be a $(q, k, 2)$－biplane with $q=p^{r}$ an odd prime power admitting a flag－transitive automorphism group of affine type $G \leq А \Gamma L(1, q)$ ．Then p does not divide $\left|G_{0}\right|$ ，and G acts regularly on the flags of D ．

Corollary

If D is as above，then $G \leq A G L(1, q)$（with $|G|=v k$ ， $G_{0} \leq G L(1, q)$ and $\left.\left|G_{0}\right|=k\right)$ ．

Results

The one-dimensional affine case

The setup:

Results

The setup:

- Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$, so $v=q=p^{r}$ with p an odd prime.

Results

The setup：
－Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$ ，so $v=q=p^{r}$ with p an odd prime．
－Identify the set of points P with $G F\left(p^{r}\right)$ ，so：

Results

The setup:

- Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$, so $v=q=p^{r}$ with p an odd prime.
- Identify the set of points P with $G F\left(p^{r}\right)$, so:
- $G \leq A G L(1, q)=\langle T, \hat{w}\rangle$, where:

Results

The setup:

- Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$, so $v=q=p^{r}$ with p an odd prime.
- Identify the set of points P with $G F\left(p^{r}\right)$, so:
- $G \leq \operatorname{AGL}(1, q)=\langle T, \hat{w}\rangle$, where:
- T is the translation group,

Results

The setup:

- Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$, so $v=q=p^{r}$ with p an odd prime.
- Identify the set of points P with $G F\left(p^{r}\right)$, so:
- $G \leq A G L(1, q)=\langle T, \hat{w}\rangle$, where:
- T is the translation group,
- w is a primitive root of $G F\left(p^{r}\right)$ and \hat{w} denotes multiplying by w, and

Results

The setup：
－Let D be a biplane with an automorphism group G such that $G \leq A G L(1, q)$ ，so $v=q=p^{r}$ with p an odd prime．
－Identify the set of points P with $G F\left(p^{r}\right)$ ，so：
－$G \leq A G L(1, q)=\langle T, \hat{w}\rangle$ ，where：
－T is the translation group，
－w is a primitive root of $G F\left(p^{r}\right)$ and \hat{w} denotes multiplying by w ，and
－$G_{0} \leq\langle\hat{w}\rangle$ ．

Results

There are necessary conditions for the existence of a flag－transitive biplane，such as：

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$
- $8 v-7$ is a square

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$
- $8 v-7$ is a square
- $2 v<k^{2}$

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$
- $8 v-7$ is a square
- $2 v<k^{2}$
- Is v is even then $k-2$ is a square.

Results

There are necessary conditions for the existence of a flag－transitive biplane，such as：
－ $2(v-1)=k(k-1)$
－ $8 v-7$ is a square
－ $2 v<k^{2}$
－Is v is even then $k-2$ is a square．
－If v is odd then the equation
$(k-\lambda) x^{2}+(-1)^{(v-1) / 2} y^{2}=z^{2}$ has a non－trivial integer solution．

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$
- $8 v-7$ is a square
- $2 v<k^{2}$
- Is v is even then $k-2$ is a square.
- If v is odd then the equation
$(k-\lambda) x^{2}+(-1)^{(v-1) / 2} y^{2}=z^{2}$ has a non-trivial integer solution.
- Others arise in this particular setup (and are quite messy), but we cannot rule anything out!

Results

There are necessary conditions for the existence of a flag-transitive biplane, such as:

- $2(v-1)=k(k-1)$
- $8 v-7$ is a square
- $2 v<k^{2}$
- Is v is even then $k-2$ is a square.
- If v is odd then the equation
$(k-\lambda) x^{2}+(-1)^{(v-1) / 2} y^{2}=z^{2}$ has a non-trivial integer solution.
- Others arise in this particular setup (and are quite messy), but we cannot rule anything out!
- and then...

Results

K. Thas and D. Zagier defined a pair (p, n) to be special if:

Results

K. Thas and D. Zagier defined a pair (p, n) to be special if: - p is a prime, n divides $p-1$, and

Results

K. Thas and D. Zagier defined a pair (p, n) to be special if:

- p is a prime, n divides $p-1$, and
- the set of non-zero nth powers of $G F(p)$ is a (p, k, λ)-difference set in $G F(p)$, where $k=(p-1) / n$ and $\lambda=(k-1) / n$.

Results

K. Thas and D. Zagier defined a pair (p, n) to be special if:

- p is a prime, n divides $p-1$, and
- the set of non-zero nth powers of $G F(p)$ is a (p, k, λ)-difference set in $G F(p)$, where $k=(p-1) / n$ and $\lambda=(k-1) / n$.
- They proved that if D is a flag-regular (p, k, λ)-symmetric design with p prime, then $k=(p-1) / n, \lambda=(k-1) / n$, and (p, n) is a special pair.

Results

K. Thas and D. Zagier defined a pair (p, n) to be special if:

- p is a prime, n divides $p-1$, and
- the set of non-zero nth powers of $G F(p)$ is a (p, k, λ)-difference set in $G F(p)$, where $k=(p-1) / n$ and $\lambda=(k-1) / n$.
- They proved that if D is a flag-regular (p, k, λ)-symmetric design with p prime, then $k=(p-1) / n, \lambda=(k-1) / n$, and (p, n) is a special pair.
- They gave five families of special pairs, and conjectured they are the only ones.

Results

K．Thas and D．Zagier defined a pair (p, n) to be special if：
－p is a prime，n divides $p-1$ ，and
－the set of non－zero nth powers of $G F(p)$ is a (p, k, λ)－difference set in $G F(p)$ ，where $k=(p-1) / n$ and $\lambda=(k-1) / n$ ．
－They proved that if D is a flag－regular (p, k, λ)－symmetric design with p prime，then $k=(p-1) / n, \lambda=(k-1) / n$ ， and (p, n) is a special pair．
－They gave five families of special pairs，and conjectured they are the only ones．
－They prove the conjecture for $p<10000000$ ．

Results

Very likely corollary
If D is a flag－transitive biplane with p points and $37<p$ prime，then $10000000<p$ ．

Köszönöm!

Thank you!

[^0]: Theorem (K. Thas, D. Zagier, 2008)
 If D is a $\left(n^{2}+n+1, n+1,1\right)$-symmetric design and $n^{2}+n+1<4 \times 10^{22}$ with $n^{2}+n+1=p$ prime, then D is Desarguesian.

